Skip to main content

Structure, Function, and Nutrition of Zinc-Containing Proteins in Foodstuffs

  • Chapter
  • First Online:
Mineral Containing Proteins
  • 656 Accesses

Abstract

The importance of trace metal elements in human health and nutrition is undisputable, and among them, zinc is the second most abundant, just behind Fe. And it is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. Zinc proteins and peptides in foodstuffs are good resources for zinc supplement. Herein zinc-containing proteins and peptides in foodstuffs are reviewed in the aspects of their structure, function, and role in human health and nutrition. It will help us better understand the importance of mineral-containing proteins in human health and nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Calesnick B, Dinan AM. Zinc deficiency and zinc toxicity. Am Fam Physician. 1988;37:267–70.

    CAS  Google Scholar 

  2. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. Arch Toxicol. 2012;86:521–34.

    Article  CAS  Google Scholar 

  3. Bhowmik D, Chiranjib K. A potential medicinal importance of zinc in human health and chronic. Int J Pharm. 2010;1:05–11.

    Google Scholar 

  4. Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL. Zinc and cardiovascular disease. Nutrition. 2010;26:1050–7.

    Article  CAS  Google Scholar 

  5. John E, Laskow TC, Buchser WJ, Pitt BR, Basse PH, Butterfield LH, et al. Zinc in innate and adaptive tumor immunity. J Transl Med. 2010;8:118.

    Article  CAS  Google Scholar 

  6. Wang C-Y, Wang T, Zheng W, Zhao B-L, Danscher G, Chen Y-H, et al. Zinc overload enhances APP cleavage and Aβ deposition in the Alzheimer mouse brain. PLoS One. 2010;5:e15349.

    Article  CAS  Google Scholar 

  7. Salgueiro MJ, Krebs N, Zubillaga MB, Weill R, Postaire E, Lysionek AE, et al. Zinc and diabetes mellitus. Biol Trace Elem Res. 2001;81:215–28.

    Article  CAS  Google Scholar 

  8. Nowak G, Szewczyk B, Pilc A. Zinc and depression. An update. Pharmacol Rep. 2005;57:713–8.

    CAS  Google Scholar 

  9. Shimizu N, Fujiwara J, Ohnishi S, Sato M, Kodama H, Kohsaka T, et al. Effects of long-term zinc treatment in Japanese patients with Wilson disease: efficacy, stability, and copper metabolism. Transl Res. 2010;156:350–7.

    Article  CAS  Google Scholar 

  10. Lönnerdal B. Zinc and health: current status and future directions. J Nutr. 2000;130:1378–83.

    Google Scholar 

  11. Péres J-M, Bouhallab S, Petit C, Bureau F, Maubois J-L, Arhan P, et al. Improvement of zinc intestinal absorption and reduction of zinc/iron interaction using metal bound to the caseinophosphopeptide 1-25 of β-casein. Reprod Nutr Dev. 1998;38:465–72.

    Article  Google Scholar 

  12. Osborne TB. The vegetable proteins. London: Longmans, Green and Co; 1924.

    Google Scholar 

  13. Simonovi BR. A DSC study of zinc binding to bovine serum albumin (BSA). J Serb Chem Soc. 2007;72:331–7.

    Article  CAS  Google Scholar 

  14. Stewart AJ, Blindauer CA, Berezenko S, Sleep D, Sadler PJ. Interdomain zinc site on human albumin. Proc Natl Acad Sci. 2003;100:3701–6.

    Article  CAS  Google Scholar 

  15. Jahanshahi M, Najafpour G, Rahimnejad M. Applying the Taguchi method for optimized fabrication of bovine serum albumin (BSA) nanoparticles as drug delivery vehicles. Afr J Biotechnol. 2008;7:362–7.

    CAS  Google Scholar 

  16. Peters Jr T. All about albumin: biochemistry, genetics, and medical applications. New York: Academic Press; 1995.

    Google Scholar 

  17. Foote J, Delves H. Albumin bound and alpha 2-macroglobulin bound zinc concentrations in the sera of healthy adults. J Clin Pathol. 1984;37:1050–4.

    Article  CAS  Google Scholar 

  18. Masuoka J, Hegenauer J, Van Dyke B, Saltman P. Intrinsic stoichiometric equilibrium constants for the binding of zinc (II) and copper (II) to the high affinity site of serum albumin. J Biol Chem. 1993;268:21533–7.

    CAS  Google Scholar 

  19. Kragh-Hansen U, Vorum H. Quantitative analyses of the interaction between calcium ions and human serum albumin. Clin Chem. 1993;39:202–8.

    CAS  Google Scholar 

  20. Pedersen K. Binding of calcium to serum albumin III. Influence of ionic strength and ionic medium. Scand J Clin Lab Invest. 1972;29:427–32.

    Article  CAS  Google Scholar 

  21. Varshney A, Sen P, Ahmad E, Rehan M, Subbarao N, Khan RH. Ligand binding strategies of human serum albumin: how can the cargo be utilized? Chirality. 2010;22:77–87.

    Article  CAS  Google Scholar 

  22. He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature. 1992;358:209–15.

    Article  CAS  Google Scholar 

  23. Sudlow G, Birkett D, Wade D. The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol. 1975;11:824–32.

    CAS  Google Scholar 

  24. Sudlow G, Birkett D, Wade D. Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol. 1976;12:1052–61.

    CAS  Google Scholar 

  25. Bhattacharya AA, Grüne T, Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J Mol Biol. 2000;303:721–32.

    Article  CAS  Google Scholar 

  26. Kragh-Hansen U, Chuang VTG, Otagiri M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull. 2002;25:695–704.

    Article  CAS  Google Scholar 

  27. Majorek KA, Porebski PJ, Dayal A, Zimmerman MD, Jablonska K, Stewart AJ, et al. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol Immunol. 2012;52:174–82.

    Article  CAS  Google Scholar 

  28. Gelamo E, Silva C, Imasato H, Tabak M. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling. Biochim Biophys Acta. 2002;1594:84–99.

    Article  CAS  Google Scholar 

  29. Peters T. Serum albumin. Adv Protein Chem. 1985;37:161–245.

    Article  CAS  Google Scholar 

  30. Wu D, Yan J, Wang J, Wang Q, Li H. Characterisation of interaction between food colourant allura red AC and human serum albumin: multispectroscopic analyses and docking simulations. Food Chem. 2015;170:423–9.

    Article  CAS  Google Scholar 

  31. Li T, Cheng Z, Cao L, Jiang X. Comparison of interactions between three food colorants and BSA. Food Chem. 2016;194:740–8.

    Article  CAS  Google Scholar 

  32. Arrutia F, Puente Á, Riera FA, Menéndez C, González UA. Influence of heat pre-treatment on BSA tryptic hydrolysis and peptide release. Food Chem. 2016;202:40–8.

    Article  CAS  Google Scholar 

  33. Ikedo S, Shimoyamada M, Watanabe K. Interaction between bovine serum albumin and saponin as studied by heat stability and protease digestion. J Agric Food Chem. 1996;44:792–5.

    Article  CAS  Google Scholar 

  34. Wang A, Zhou K, Qi X, Zhao G. Phytoferritin association induced by EGCG inhibits protein degradation by proteases. Plant Foods Hum Nutr. 2014;69:386–91.

    Article  CAS  Google Scholar 

  35. Wang Q, Zhou K, Ning Y, Zhao G. Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin. Food Chem. 2016;213:260–7.

    Article  CAS  Google Scholar 

  36. Zhang T, Lv C, Chen L, Bai G, Zhao G, Xu C. Encapsulation of anthocyanin molecules within a ferritin nanocage increases their stability and cell uptake efficiency. Food Res Int. 2014;62:183–92.

    Article  CAS  Google Scholar 

  37. Chen L, Bai G, Yang R, Zang J, Zhou T, Zhao G. Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability. Food Chem. 2014;149:307–12.

    Article  CAS  Google Scholar 

  38. Rahimnejad M, Jahanshahi M, Najafpour GD. Production of biological nanoparticles from bovine serum albumin for drug delivery. Afr J Biotechnol. 2006;5:1918–23.

    CAS  Google Scholar 

  39. Sadeghi R, Moosavi-Movahedi A, Emam-Jomeh Z, Kalbasi A, Razavi S, Karimi M, et al. The effect of different desolvating agents on BSA nanoparticle properties and encapsulation of curcumin. J Nanopart Res. 2014;16:1–14.

    Article  CAS  Google Scholar 

  40. Chen LL, Bai GL, Yang SP, Yang R, Zhao GH, Xu CS, et al. Encapsulation of curcumin in recombinant human H-chain ferritin increases its water-solubility and stability. Food Res Int. 2014;62:1147–53.

    Article  CAS  Google Scholar 

  41. Gomez-Estaca J, Balaguer MP, Gavara R, Hernandez-Munoz P. Formation of zein nanoparticles by electrohydrodynamic atomization: effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocoll. 2012;28:82–91.

    Article  CAS  Google Scholar 

  42. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar M. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37:223–30.

    Article  CAS  Google Scholar 

  43. Kamau SM, Cheison SC, Chen W, Liu XM, Lu RR. Alpha-lactalbumin: its production technologies and bioactive peptides. Compr Rev Food Sci Food Saf. 2010;9:197–212.

    Article  CAS  Google Scholar 

  44. Brew K, Castellino FJ, Vanaman TC, Hill RL. The complete amino acid sequence of bovine α-lactalbumin. J Biol Chem. 1970;245:4570–82.

    CAS  Google Scholar 

  45. Findlay JB, Brew K. The complete amino-acid sequence of human α-lactalbumin. Eur J Biochem. 1972;27:65–86.

    Article  CAS  Google Scholar 

  46. Brew K, Vanaman TC, Hill RL. The role of alpha-lactalbumin and the A protein in lactose synthetase: a unique mechanism for the control of a biological reaction. Proc Natl Acad Sci. 1968;59:491–7.

    Article  CAS  Google Scholar 

  47. Nitta K, Sugai S. The evolution of lysozyme and α-lactalbumin. Eur J Biochem. 1989;182:111–8.

    Article  CAS  Google Scholar 

  48. Tolkach A, Steinle S, Kulozik U. Optimization of thermal pretreatment conditions for the separation of native α-lactalbumin from whey protein concentrates by means of selective denaturation of β-lactoglobulin. J Food Sci. 2005;70:E557–66.

    Article  CAS  Google Scholar 

  49. Ren J, Stuart DI, Acharya K. Alpha-lactalbumin possesses a distinct zinc binding site. J Biol Chem. 1993;268:19292–8.

    CAS  Google Scholar 

  50. Chandra N, Brew K, Acharya KR. Structural evidence for the presence of a secondary calcium binding site in human α-lactalbumin. Biochemistry. 1998;37:4767–72.

    Article  CAS  Google Scholar 

  51. Permyakov EA, Shnyrov VL, Kalinichenko LP, Kuchar A, Reyzer IL, Berliner LJ. Binding of Zn (II) ions to α-lactalbumin. J Protein Chem. 1991;10:577–84.

    Article  CAS  Google Scholar 

  52. Ren J, Stuart DI, Acharya KR. Alpha-lactalbumin possesses a distinct zinc binding site. J Biol Chem. 1993;268:19292–8.

    CAS  Google Scholar 

  53. Veprintsev DB, Permyakov EA, Kalinichenko L, Berliner LJ. Pb2 and Hg2 binding to α-lactalbumin. IUBMB Life. 1996;39:1255–65.

    Article  CAS  Google Scholar 

  54. Permyakov EA, Morozova LA, Kahnichenko LP, Derezhkov VY. Interaction of α-lactalbumin with Cu 2+. Biophys Chem. 1988;32:37–42.

    Article  CAS  Google Scholar 

  55. Veprintsev DB, Permyakov SE, Permyakov EA, Rogov VV, Cawthern KM, Berliner LJ. Cooperative thermal transitions of bovine and human apo-α-lactalbumins: evidence for a new intermediate state. FEBS Lett. 1997;412:625–8.

    Article  CAS  Google Scholar 

  56. Griko YV, Freire E, Privalov PL. Energetics of the alpha-lactalbumin states: a calorimetric and statistical thermodynamic study. Biochemistry. 1994;33:1889–99.

    Article  CAS  Google Scholar 

  57. Hirai Y, Permyakov EA, Berliner LJ. Proteolytic digestion of α-lactalbumin: physiological implications. J Protein Chem. 1992;11:51–7.

    Article  CAS  Google Scholar 

  58. Pérez MD, de Villegas CD, Sánchez L, Aranda P, Ena JM, Calvo M. Interaction of fatty acids with β-lactoglobulin and albumin from ruminant milk. J Biochem. 1989;106:1094–7.

    Article  Google Scholar 

  59. Barbana C, Pérez MD, Sánchez L, Dalgalarrondo M, Chobert JM, Haertlé T, et al. Interaction of bovine α-lactalbumin with fatty acids as determined by partition equilibrium and fluorescence spectroscopy. Int Dairy J. 2006;16:18–25.

    Article  CAS  Google Scholar 

  60. Cawthern KM, Narayan M, Chaudhuri D, Permyakov EA, Berliner LJ. Interactions of α-lactalbumin with fatty acids and spin label analogs. J Biol Chem. 1997;272:30812–6.

    Article  CAS  Google Scholar 

  61. Zhang M, Yang F, Chen J, Zheng C-Y, Liang YI. Cytotoxic aggregates of α-lactalbumin induced by unsaturated fatty acid induce apoptosis in tumor cells. Chem Biol Interact. 2009;180:131–42.

    Article  CAS  Google Scholar 

  62. Fast J, Mossberg AK, Svanborg C, Linse S. Stability of HAMLET—a kinetically trapped α-lactalbumin oleic acid complex. Protein Sci. 2005;14:329–40.

    Article  CAS  Google Scholar 

  63. Wehbi Z, Pérez M-D, Sánchez L, Pocoví C, Barbana C, Calvo M. Effect of heat treatment on denaturation of bovine α-lactalbumin: determination of kinetic and thermodynamic parameters. J Agric Food Chem. 2005;53:9730–6.

    Article  CAS  Google Scholar 

  64. Knyazeva EL, Grishchenko VM, Fadeev RS, Akatov VS, Permyakov SE, Permyakov EA. Interaction of human α-lactalbumin with monomeric oleic acid. Biochemistry. 2008;47:13127–37.

    Article  CAS  Google Scholar 

  65. Puyol P, Perez MD, Ena JM, Calvo M. Interaction of bovine β-lactoglobulin and other bovine and human whey proteins with retinol and fatty acids. Agric Biol Chem. 1991;55:2515–20.

    CAS  Google Scholar 

  66. Wehbi Z, Pérez MD, Dalgalarrondo M, Sánchez L, Calvo M, Chobert JM, et al. Study of ethanol-induced conformational changes of holo and apo α-lactalbumin by spectroscopy and limited proteolysis. Mol Nutr Food Res. 2006;50:34–43.

    Article  CAS  Google Scholar 

  67. Puyol P, Perez MD, Mata L, Ena J, Calvo M. Effect of retinol and fatty acid binding by bovine β-lactoglobulin on its resistance to trypsin digestion. Int Dairy J. 1993;3:589–97.

    Article  CAS  Google Scholar 

  68. Lönnerdal B, Lien EL. Nutritional and physiologic significance of α-lactalbumin in infants. Nutr Rev. 2003;61:295–305.

    Article  Google Scholar 

  69. Pellegrini A, Thomas U, Bramaz N, Hunziker P, von Fellenberg R. Isolation and identification of three bactericidal domains in the bovine α-lactalbumin molecule. Biochim Biophys Acta. 1999;1426:439–48.

    Article  CAS  Google Scholar 

  70. Svensson M, Håkansson A, Mossberg AK, Linse S, Svanborg C. Conversion of α-lactalbumin to a protein inducing apoptosis. Proc Natl Acad Sci. 2000;97:4221–6.

    Article  CAS  Google Scholar 

  71. Puthia M, Storm P, Nadeem A, Hsiung S, Svanborg C. Prevention and treatment of colon cancer by peroral administration of HAMLET (human α-lactalbumin made lethal to tumour cells). Gut. 2014;63:131–42.

    Article  CAS  Google Scholar 

  72. Hill RL, Brew K. Lactose synthetase. Adv Enzymol Relat Areas Mol Biol. 1975;43:411–90.

    CAS  Google Scholar 

  73. McCord JM, Fridovich I. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–55.

    CAS  Google Scholar 

  74. Elstner EF. Oxygen activation and oxygen toxicity. Annu Rev Plant Physiol. 1982;33:73–96.

    Article  CAS  Google Scholar 

  75. Wuerges J, Lee J-W, Yim Y-I, Yim H-S, Kang S-O, Carugo KD. Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc Natl Acad Sci U S A. 2004;101:8569–74.

    Article  CAS  Google Scholar 

  76. Mann T, Keilin D. Haemocuprein and hepatocuprein, copper-protein compounds of blood and liver in mammals. Proc R Soc Lond Ser B Biol Sci. 1938;126:303–15.

    Article  CAS  Google Scholar 

  77. Tainer JA, Getzoff ED, Beem KM, Richardson JS, Richardson DC. Determination and analysis of the 2 Å structure of copper, zinc superoxide dismutase. J Mol Biol. 1982;160:181–217.

    Article  CAS  Google Scholar 

  78. Djinovic K, Gatti G, Coda A, Antolini L, Pelosi G, Desideri A, et al. Crystal structure of yeast Cu, Zn superoxide dismutase: crystallographic refinement at 2.5 Å resolution. J Mol Biol. 1992;225:791–809.

    Article  CAS  Google Scholar 

  79. Djinovic Carugo K, Battistoni A, Carri M, Polticelli F, Desideri A, Rotilio G, et al. Three-dimensional structure of Xenopus laevis Cu, Zn superoxide dismutase b determined by X-ray crystallography at 1.5 Å resolution. Acta Crystallogr D Biol Crystallogr. 1996;52:176–88.

    Article  CAS  Google Scholar 

  80. Kitagawa Y, Tanaka N, Hata Y, Kusunoki M, Lee GP, Katsube Y, et al. Three-dimensional structure of Cu, Zn-superoxide dismutase from spinach at 2.0 Å resolution. J Biochem. 1991;109:477–85.

    Article  CAS  Google Scholar 

  81. Banci L, Bertini I, Cramaro F, Del Conte R, Viezzoli MS. The solution structure of reduced dimeric copper zinc superoxide dismutase. Eur J Biochem. 2002;269:1905–15.

    Article  CAS  Google Scholar 

  82. Richardson JS. Beta-sheet topology and the relatedness of proteins. Nature. 1977;268:495–500.

    Article  CAS  Google Scholar 

  83. Hallewell RA, Imlay KC, Lee P, Fong NM, Gallegos C, Getzoff ED, et al. Thermostabilization of recombinant human and bovine CuZn superoxide dismutases by replacement of free cysteines. Biochem Biophys Res Commun. 1991;181:474–80.

    Article  CAS  Google Scholar 

  84. Getzoff ED, Cabelli DE, Fisher CL, Parge HE, Viezzoli MS, Banci L, et al. Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature. 1992;358:347–51.

    Article  CAS  Google Scholar 

  85. Hough MA, Hasnain SS. Structure of fully reduced bovine copper zinc superoxide dismutase at 1.15 Å. Structure (London, England: 1993). 2003;11:937–46.

    Article  CAS  Google Scholar 

  86. Strange RW, Antonyuk SV, Hough MA, Doucette PA, Valentine JS, Hasnain SS. Variable metallation of human superoxide dismutase: atomic resolution crystal structures of Cu–Zn, Zn–Zn and as-isolated wild-type enzymes. J Mol Biol. 2006;356:1152–62.

    Article  CAS  Google Scholar 

  87. Parker MW, Blake CC. Crystal structure of manganese superoxide dismutase from Bacillus stearothermophilus at 2.4 Å resolution. J Mol Biol. 1988;199:649–61.

    Article  CAS  Google Scholar 

  88. Borgstahl GE, Parge HE, Hickey MJ, Beyer WF, Hallewell RA, Tainer JA. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell. 1992;71:107–18.

    Article  CAS  Google Scholar 

  89. Wagner UG, Frolow F, Sussman JL, Pattridge KA, Ludwig ML, Stallings WC, et al. Comparison of the crystal structures of genetically engineered human manganese superoxide dismutase and manganese superoxide dismutase from Thermus thermophilus: differences in dimer–dimer interaction. Protein Sci. 1993;2:814–25.

    Article  CAS  Google Scholar 

  90. Sines J, Allison S, Wierzbicki A, McCammon J. Brownian dynamics simulation of the superoxide-superoxide dismutase reaction: iron and manganese enzymes. J Phys Chem. 1990;94:959–61.

    Article  CAS  Google Scholar 

  91. Hong-Duk Y, Eun-Ja K, Jung-Hye R, Hah YC, Sa-Ouk K. A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J. 1996;318:889–96.

    Article  Google Scholar 

  92. Schmidt A, Gube M, Schmidt A, Kothe E. In silico analysis of nickel containing superoxide dismutase evolution and regulation. J Basic Microbiol. 2009;49:109–18.

    Article  CAS  Google Scholar 

  93. Choudhury SB, Lee J-W, Davidson G, Yim Y-I, Bose K, Sharma ML, et al. Examination of the nickel site structure and reaction mechanism in Streptomyces seoulensis superoxide dismutase. Biochemistry. 1999;38:3744–52.

    Article  CAS  Google Scholar 

  94. Finley JW, Kong A-N, Hintze KJ, Jeffery EH, Ji LL, Lei XG. Antioxidants in foods: state of the science important to the food industry. J Agric Food Chem. 2011;59:6837–46.

    Article  CAS  Google Scholar 

  95. Vouldoukis I, Conti M, Krauss P, Kamate C, Blazquez S, Tefit M, et al. Supplementation with gliadin-combined plant superoxide dismutase extract promotes antioxidant defences and protects against oxidative stress. Phytother Res. 2004;18:957–62.

    Article  CAS  Google Scholar 

  96. Margoshes M, Vallee BL. A cadmium protein from equine kidney cortex. J Am Chem Soc. 1957;79:4813–4.

    Article  CAS  Google Scholar 

  97. Coyle P, Philcox J, Carey L, Rofe A. Metallothionein: the multipurpose protein. Cell Mol Life Sci. 2002;59:627–47.

    Article  CAS  Google Scholar 

  98. Vašák M, Hasler DW. Metallothioneins: new functional and structural insights. Curr Opin Chem Biol. 2000;4:177–83.

    Article  Google Scholar 

  99. Berry M, Friend D. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969;43:506–20.

    Article  CAS  Google Scholar 

  100. Braun W, Vasak M, Robbins A, Stout C, Wagner G, Kägi J, et al. Comparison of the NMR solution structure and the X-ray crystal structure of rat metallothionein-2. Proc Natl Acad Sci. 1992;89:10124–8.

    Article  CAS  Google Scholar 

  101. Wang H, Zhang Q, Cai B, Li H, Sze K-H, Huang Z-X, et al. Solution structure and dynamics of human metallothionein-3 (MT-3). FEBS Lett. 2006;580:795–800.

    Article  CAS  Google Scholar 

  102. Blindauer CA, Harrison MD, Parkinson JA, Robinson AK, Cavet JS, Robinson NJ, et al. A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity. Proc Natl Acad Sci. 2001;98:9593–8.

    Article  CAS  Google Scholar 

  103. Maret W, Vallee BL. Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci. 1998;95:3478–82.

    Article  CAS  Google Scholar 

  104. Suhy DA, Simon KD, Linzer DI, O’Halloran TV. Metallothionein is part of a zinc-scavenging mechanism for cell survival under conditions of extreme zinc deprivation. J Biol Chem. 1999;274:9183–92.

    Article  CAS  Google Scholar 

  105. Duncan KER, Ngu TT, Chan J, Salgado MT, Merrifield ME, Stillman MJ. Peptide folding, metal-binding mechanisms, and binding site structures in metallothioneins. Exp Biol Med. 2006;231:1488–99.

    Article  CAS  Google Scholar 

  106. Jacob C, Maret W, Vallee BL. Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Natl Acad Sci. 1998;95:3489–94.

    Article  CAS  Google Scholar 

  107. Waalkes MP, Harvey MJ, Klaassen CD. Relative in vitro affinity of hepatic metallothionein for metals. Toxicol Lett. 1984;20:33–9.

    Google Scholar 

  108. Kang YJ. Metallothionein redox cycle and function. Exp Biol Med. 2006;231:1459–67.

    Article  CAS  Google Scholar 

  109. Haq F, Mahoney M, Koropatnick J. Signaling events for metallothionein induction. Mutat Res. 2003;533:211–26.

    Article  CAS  Google Scholar 

  110. Ohta H, Cherian MG. Gastrointestinal absorption of cadmium and metallothionein. Toxicol Appl Pharmacol. 1991;107:63–72.

    Article  CAS  Google Scholar 

  111. Pan A, Yang M, Tie F, Li L, Chen Z, Ru B. Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol. 1994;24:341–51.

    Article  CAS  Google Scholar 

  112. Yang X, Lv C, Zhang S, Zhao G, Ma C. Zn2+ rather than Ca2+ or Mg2+ used as a cofactor in non-muscular actin from the oyster to control protein polymerization. Biochim Biophys Acta. 2013;1830:4179–88.

    Article  CAS  Google Scholar 

  113. Herman IM. Actin isoforms. Curr Opin Cell Biol. 1993;5:48–55.

    Article  CAS  Google Scholar 

  114. Bork P, Sander C, Valencia A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci. 1992;89:7290–4.

    Article  CAS  Google Scholar 

  115. Carlier M-F, Valentin-Ranc C, Combeau C, Fievez S, Pantoloni D. Actin polymerization: regulation by divalent metal ion and nucleotide binding, ATP hydrolysis and binding of myosin. In: Estes JE, Higgins PJ, editors. Actin: biophysics, biochemistry, and cell biology. Boston, MA: Springer US; 1994. p. 71–81.

    Google Scholar 

  116. Oda T, Iwasa M, Aihara T, Maéda Y, Narita A. The nature of the globular-to fibrous-actin transition. Nature. 2009;457:441–5.

    Article  CAS  Google Scholar 

  117. Dominguez R, Holmes KC. Actin structure and function. Annu Rev Biophys. 2011;40:169.

    Article  CAS  Google Scholar 

  118. Holmes KC, Popp D, Gebhard W, Kabsch W. Atomic model of the actin filament. Nature. 1990;347:44–9.

    Article  CAS  Google Scholar 

  119. Egelman EH. The structure of F-actin. J Muscle Res Cell Motil. 1985;6:129–51.

    Article  CAS  Google Scholar 

  120. May RC. The Arp2/3 complex: a central regulator of the actin cytoskeleton. Cell Mol Life Sci. 2001;58:1607–26.

    Article  CAS  Google Scholar 

  121. Remignon H, Molette C, Babile R, Fernandez X. Current advances in proteomic analysis and its use for the resolution of poultry meat quality problems. Worlds Poult Sci J. 2006;62:123–30.

    Article  Google Scholar 

  122. Van der Meeren P, Dewettinck K, Saveyn H. Particle size analysis. In: Nollet LML, editor. Handbook of food analysis: methods and instruments in applied food analysis. Boca Raton: CRC Press; 2004. p. 1805–7.

    Google Scholar 

  123. Mogensen J, Klausen IC, Pedersen AK, Egeblad H, Bross P, Kruse TA, et al. α-Cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest. 1999;103:R39–43.

    Article  CAS  Google Scholar 

  124. Guo D-C, Pannu H, Tran-Fadulu V, Papke CL, Robert KY, Avidan N, et al. Mutations in smooth muscle α-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39:1488–93.

    Article  CAS  Google Scholar 

  125. Yang F, Sun X, Beech W, Teter B, Wu S, Sigel J, et al. Antibody to caspase-cleaved actin detects apoptosis in differentiated neuroblastoma and plaque-associated neurons and microglia in Alzheimer's disease. Am J Pathol. 1998;152:379–89.

    CAS  Google Scholar 

  126. Chen D, Liu Z, Huang W, Zhao Y, Dong S, Zeng M. Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate. J Funct Foods. 2013;5:689–97.

    Article  CAS  Google Scholar 

  127. Carrasco-Castilla J, Hernández-Álvarez AJ, Jiménez-Martínez C, Jacinto-Hernández C, Alaiz M, Girón-Calle J, et al. Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food Chem. 2012;135:1789–95.

    Article  CAS  Google Scholar 

  128. Wang X, Zhou J, Tong P, Mao X. Zinc-binding capacity of yak casein hydrolysate and the zinc-releasing characteristics of casein hydrolysate-zinc complexes. J Dairy Sci. 2011;94:2731–40.

    Article  CAS  Google Scholar 

  129. Xie N, Huang J, Li B, Cheng J, Wang Z, Yin J, et al. Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: possible contribution of characteristic amino acid residues. Food Chem. 2015;173:210–7.

    Article  CAS  Google Scholar 

  130. Zhu K-X, Wang X-P, Guo X-N. Isolation and characterization of zinc-chelating peptides from wheat germ protein hydrolysates. J Funct Foods. 2015;12:23–32.

    Article  CAS  Google Scholar 

  131. Wang C, Li B, Wang B, Xie N. Degradation and antioxidant activities of peptides and zinc–peptide complexes during in vitro gastrointestinal digestion. Food Chem. 2015;173:733–40.

    Article  CAS  Google Scholar 

  132. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. Arch Toxicol. 2012;86:521–34.

    Article  CAS  Google Scholar 

  133. Brown KH, Peerson JM, Allen LH. Effect of zinc supplementation on children growth: a meta-analysis of intervention trials. Bibl Nutr Dieta. 1998;25:76–83.

    Google Scholar 

  134. Black RE. Therapeutic and preventive effects of zinc on serious childhood infectious diseases in developing countries. Am J Clin Nutr. 1998;68:476S–9S.

    CAS  Google Scholar 

  135. Goldenberg RL, Tamura T, Neggers Y, Copper RL, Johnston KE, DuBard MB, et al. The effect of zinc supplementation on pregnancy outcome. JAMA. 1995;274:463–8.

    Article  CAS  Google Scholar 

  136. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998;68:447S–63S.

    CAS  Google Scholar 

  137. Gibson RS, Ferguson EL. Assessment of dietary zinc in a population. Am J Clin Nutr. 1998;68:430S–4S.

    CAS  Google Scholar 

  138. O'Dell BL. Effect of dietary components upon zinc availability: a review with original data. Am J Clin Nutr. 1969;22:1315–22.

    Google Scholar 

  139. Vohra P, Kratzer FH. Influence of various chelating agents on the availability of zinc. J Nutr. 1964;82:249–56.

    CAS  Google Scholar 

  140. Bosscher D, Van Caillie-Bertrand M, Van Cauwenbergh R, Deelstra H. Availabilities of calcium, iron, and zinc from dairy infant formulas is affected by soluble dietary fibers and modified starch fractions. Nutrition. 2003;19:641–5.

    Article  CAS  Google Scholar 

  141. Wood RJ, Zheng JJ. High dietary calcium intakes reduce zinc absorption and balance in humans. Am J Clin Nutr. 1997;65:1803–9.

    CAS  Google Scholar 

  142. Solomons NW, Jacob RA. Studies on the bioavailability of zinc in humans: effects of heme and nonheme iron on the absorption of zinc. Am J Clin Nutr. 1981;34:475–82.

    CAS  Google Scholar 

  143. Reynolds EC. Phosphopeptides for the treatment of dental calculus. World Patent WO 93/03707; 1993.

    Google Scholar 

  144. Maubois JL, Léonil J. Peptides du lait à activité biologique. Lait. 1989;69:245–69.

    Article  CAS  Google Scholar 

  145. García-Nebot MJ, Barberá R, Alegría A. Iron and zinc bioavailability in Caco-2 cells: Influence of caseinophosphopeptides. Food Chem. 2013;138:1298–303.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 31471693 and 31671805) and China High-Tech (863) Project (2013AA102208-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghua Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhou, K., Zhao, G. (2017). Structure, Function, and Nutrition of Zinc-Containing Proteins in Foodstuffs. In: Zhao, G. (eds) Mineral Containing Proteins . Springer, Singapore. https://doi.org/10.1007/978-981-10-3596-8_3

Download citation

Publish with us

Policies and ethics