Skip to main content
Log in

Potential and Prospects of Shikonin Production Enhancement in Medicinal Plants

  • Review
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Plants are a rich source of valuable chemicals that are used as herbal and modern medicines. Shikonin, a naphthoquinone red pigment, produced from roots of Arnebia hispidissima, A. euchroma, Lithospermum erythrorhizon and other Boraginaceous species was the first phytochemical to be produced on commercial scale using biotechnological approach. Plant cell culture technologies were the only tools employed for secondary metabolites production in other cases in past. Shikonin production and localization is tissue specific with stringent metabolic regulation. Hence, the differentiated cultures such as those of hairy root cultures offer a great promise for secondary metabolite production. A. rhizogenes-mediated transformed roots are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce larger amounts of secondary metabolites. The present review deliberates upon potential and prospects of diverse physico-chemical factors that affect shikonin production in tissue culture, as well as, the genetic modification for enhancement of shikonin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

BAP:

6-Benzylaminopurine

B5 :

Gamborg’s medium

CaMV35S :

Cauliflower mosaic virus 35S promoter

2,4-D:

2,4-Dichlorophenoxy acetic acid

DA:

Davydenkov arnebia medium

DOPA:

L-3,4-Dihydroxyphenylalanine

GA3 :

Gibberellic acid

GUS:

β-Glucuronidase

HMGR:

Hydroxymethylglutaryl CoA reductase

HPLC:

High pressure liquid chromatography

HPT:

Hygromycin phosphotransferase

IAA:

Indole acetic acid

LS:

Linsmaier and Skoog’s medium

MeJa:

Methyl jasmonate

MS:

Murashige and Skoog’s medium

NAA:

α-Naphthalene acetic acid

PAL:

Phenylalanine ammonia-lyase

PFP:

P-fluorophenylalanine

PVP:

Polyvynilpirrolidone

RC:

Root culture medium

TDZ:

Thidiazuron

TLC:

Thin layer chromatography

References

  1. Papageorgiou VP, Assimopoulou AN, Samanidou VF, Papadoyannis IN (2006) Recent advances in chemistry, biology and biotechnology of alkannins and shikonins. Curr Org Chem 10:2123–2142

    Article  CAS  Google Scholar 

  2. Pietrosiuk A, Furmanowa M, Skopińska-Różewska E, Sommer E, Skurzak H, Bany J (2004) The effect of acetylshikonin isolated from Lithospermum canescens roots on tumour-induced cutaneous angiogenesis. Acta Pol Pharm 5:379–382

    Google Scholar 

  3. Pietrosiuk A, Skopińska-Różewska E, Furmanowa M, Wiedenfeld H, Sommer E, Sokolnicka I, Rogala E, Radomska-Leśniewska D, Bany J, Malinowski M (2004) Immunomodulatory effect of shikonin derivatives isolated from Lithospermum canescens on cellular and humoral immunity in Balb/c mice. Pharmazie 59:640–642

    CAS  PubMed  Google Scholar 

  4. Su L, Yan GZ, Guan BJ, Xu W, Hao YY, Wang YL, Zhang Y, Liu LH (2011) Shikonin derivatives protect immune organs from damage and promote immune responses in vivo in tumour-bearing mice. Phytother Res 26:26–33

    Google Scholar 

  5. Chaudhury A, Pal M (2010) Induction of shikonin production in hairy root cultures of Arnebia hispididdima via Agrobacterium rhizogenes- mediated genetic transformation. J Crop Sci Biotechnol 13:99–106

    Article  Google Scholar 

  6. Yadav R, Arora P, Chaudhury A (2012) Plant secondary metabolites: from diseases to health. Front Rec Dev Plant Sci 1:3–23

    Article  Google Scholar 

  7. Manjkhola S, Dhar U, Joshi M (2005) Organogenesis, embryogenesis, and synthetic seed production in Arnebia euchroma—a critically endangered medicinal plant of the Himalaya. In Vitro Cell Dev Biol Plant 41:244–248

    Article  Google Scholar 

  8. Sykłowska-Baranek K, Pietrosiuk A, Naliwajski MR, Kawiak A, Jeziorek M, Wyderska S, Łojkowska E, Chinou I (2012) Effect of l-phenylalanine on PAL activity and production of naphthoquinone pigments in suspension cultures of Arnebia euchroma (Royle). Johnst. In Vitro Cell Dev Biol Plant 48:555–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang B, Yang YG, Guo YM, Guo ZC, Chen YZ (2005) Thidiazuroninduced in vitro shoot organogenesis of the medicinal plant Arnebia euchroma (Royle) Johnst. In Vitro Cell Dev Biol Plant 41:677–681

    Article  CAS  Google Scholar 

  10. Ge F, Wang X, Zhao B, Wang Y (2006) Effects of rare earth elements on the growth of Arnebia euchroma cells and the biosynthesis of shikonin. Plant Growth Regul 48:283–290

    Article  CAS  Google Scholar 

  11. Kumar R, Sharma N, Malik S, Bhushan S, Kumar Sharma U, Kumari D, Sinha Kumar A, Sharma M, Singh Ahuja P (2011) Cell suspension culture of Arnebia euchroma (Royle) Johnston—a potential source of naphthoquinone pigments. J Med Plant Res 5:6048–6054

    CAS  Google Scholar 

  12. Malik S, Bhushan S, Sharma M, Ahuja PS (2011) Physico-chemical factors influencing the shikonin derivatives production in cell suspension cultures of Arnebia euchroma (Royle) Johnston, a medicinally important plant species. Cell Biol Int 35:153–158

    Article  PubMed  Google Scholar 

  13. Shekhawat MS, Shekhawat NS (2011) Micropropagation of Arnebia hispidissima (Lehm). DC. and production of alkannin from callus and cell suspension culture. Acta Physiol Plant 33:1445–1450

    Article  CAS  Google Scholar 

  14. Zou A, Zhang W, Pan Q, Zhu S, Yin J, Tian R, Gu H, Wang X, Qi J, Yang Y (2011) Cloning, characterization, and expression of LeEIL-1, an Arabidopsis EIN3 homolog, in Lithospermum erythrorhizon. Plant Cell, Tissue Organ Cult 106:71–79

    Article  CAS  Google Scholar 

  15. Zare K, Nazemiyeh H, Movafeghi A, Khosrowshahli M, Motallebi-Azar A, Dadpour M, Omidi Y (2010) Bioprocess engineering of Echium italicum L.: induction of shikonin and alkannin derivatives by two-liquid-phase suspension cultures. Plant Cell, Tissue Organ Cult 100:157–164

    Article  CAS  Google Scholar 

  16. Roychowdhury D, Majumder A, Jha S (2013) Agrobacterium rhizogenes-mediated transformation in medicinal plants: prospects and challenges. In: Chandra S et al (eds) Biotechnol med plants. Springer, Berlin, pp 29–68

    Chapter  Google Scholar 

  17. Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    Article  CAS  PubMed  Google Scholar 

  18. Vanisree M, Lee CY, LoS Manohar S, Nalawade Lin CY, Tsay HS (2004) Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Bot Bull Acad Scinica 45:1–22

    CAS  Google Scholar 

  19. Charlwood BV, Charlwood KA, Torres JM (1990) Accumulation of secondary compounds organized plant cultures. In: Charlwood V, Rhodes MJC (eds) Progress in plant cellular and molecular biology. Clarendon Press, Oxford, pp 167–300

    Google Scholar 

  20. Rhodes MJC (1989) Secondary metabolites. In: Kurz WGW (ed) Primary and secondary metabolism of plant cell cultures. Springer, Berlin, pp 58–72

    Chapter  Google Scholar 

  21. Phulwaria M, Rai MK, Shekhawat NS (2013) An improved micropropagation of Arnebia hispidissima (lehm.) dc. and assessment of genetic fidelity of micropropagated plants using dna-based molecular markers. App. Biochem. https://doi.org/10.1007/s12010-013-0266-3

    Article  Google Scholar 

  22. Pal M, Chaudhury A (2010) High frequency direct plant regeneration, micropropagation and shikonin induction in Arnebia hispidissima. J Crop Sci Biotech 13(1):13–20

    Article  Google Scholar 

  23. Yazaki K, Matsuoka H, Shimomura K, Bechthold A, Sato F (2001) A novel dark inducible protein, LeDI-2 and its involvement in root specific secondary metabolism in Lithospermum erythrorhizon. Plant Physiol 125:1831–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chung MS, Lee MS (1994) Stability and sensory evaluation of naphthaquinones pigments from the roots of Lithospermum erythrorhizon. Korean J Food Sci Technol 26:157–161

    Google Scholar 

  25. Bulgakov VP, Kozyrenko MM, Fedoreyev SA, Mischenko NP, Denisenko VA, Zvereva LV, Pokushalova TV, Zhuravlev YN (2001) Shikonin production by p-fluorophenylalanine resistant cells of Lithospermum erythrorhizon. Fitoterapia 72(4):394–401

    Article  CAS  PubMed  Google Scholar 

  26. Shibata D, Liu YG (2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci 5:354–357

    Article  CAS  PubMed  Google Scholar 

  27. Shimomura K, Sudo H, Saga H, Komada H (1991) Shikonin production and secretion by hairy root cultures of Lithospermum erythrorhizon. Plant Cell Rep 10:282–285

    Article  CAS  PubMed  Google Scholar 

  28. Yazaki K, TanakaS Matsuoka H, Sato F (1998) Stable transformation of Lithospermum erythrorhizon by Agrobacterium rhizogenes and shikonin production of transformants. Plant Cell Rep 18:214–219

    Article  CAS  PubMed  Google Scholar 

  29. Fukui H, Hasan AFMF, Kyo M (1999) Formation and secretion of a unique quinone by hairy root cultures of Lithospermum erythrorhizon. Phytochem 51:511–515

    Article  CAS  Google Scholar 

  30. Yamamoto H, Inouye K, Yazaki K (2000) Caffeic acid oligomers in Lithospermum erythrorhizon cell suspension cultures. Phytochem 53:651–657

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The infrastructural facility provided during writing of this manuscript by Director, Centre for Plant Biotechnology, HSCST, is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minakshi Pal.

Ethics declarations

Conflict of interest

The authors also declare no conflict of interest in submission and publication of this manuscript.

Additional information

Significance statement ‘Shikonin, a naphthoquinone red pigment, produced from roots of A. hispidissima and other Boraginaceous species was first phytochemical produced on commercial scale. This review describes enhanced shikonin production strategies from medicinal plants’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, M., Kumar, V., Yadav, R. et al. Potential and Prospects of Shikonin Production Enhancement in Medicinal Plants. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 89, 775–784 (2019). https://doi.org/10.1007/s40011-017-0931-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-017-0931-3

Keywords

Navigation