Skip to main content
Log in

Bacterial Community Structure from the Perspective of the Uranium Ore Deposits of Domiasiat in India

  • Review
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Domiasiat (25°30′N 91°30′E) located in the west Khasi hill district of Meghalaya in northeast India is one of the largest sandstone-type uranium (U) ore deposit in India containing 9.22 million tonnes of ore reserves with an average ore grade of around 0.1 % U3O8. This geographically distinct U deposit of Domiasiat is un-mined and harbours diverse group of bacteria surviving the stressful environmental conditions prevalent in the ore deposit. Studies show that the diverse bacteria belonged to 10 different bacterial groups with occurrence of some previously uncharacterized bacteria. The cultured identified bacteria have been reported to tolerate substantial concentration of U and other metals and showed potent capacity for uptake and precipitation of U. Studying the bacterial community associated with such pre-mined U ore deposit are advantageous as it not only generates the baseline information on microbial community structure as resourceful indicator to estimate the impact of mining to be undertaken in future but also identifies the bacteria which can be explored for their potential as bioremediation agents for radionuclide/multi-metal waste sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Curtis MM (2007) India’s worsening uranium shortage. PNNL-16348 www.pnl.gov/main/publications/external/.../PNNL-16348.pdf. Accessed 3 Mar 2012

  2. Kakodkar A (2006) Current and emerging dimensions of the Indian Nuclear Energy Programme. In: India outlook, nuclear energy. pp 53–54. www.touchbriefings.com/pdf/2178/Kakodkar.pdf. Accessed 5 Mar 2012

  3. Gollust D (2008) US India sign civilian nuclear accord. Voice of America http://www.voanews.com/english/archive/2008-10/2008-10-10-voa66.cfm. Accessed 3 Jan 2010

  4. Dahlkamp FJ (2009) Uranium deposits of the World: Asia. Springer, Berlin

    Book  Google Scholar 

  5. Awati AB, Grover RB (2005) Demand and availability of uranium resources in India. In: Recent developments in uranium exploration, production, and environmental issues. TECDOC-1463, IAEA, Vienna, pp 7–16. www.pub.iaea.org/MTCD/publications/PDF/te_1463_web.pdf. Accessed 23 April 2012

  6. Dong H (2008) Microbial life in extreme environments: Linking geological and microbiological processes. In: Dilek Y, Furnes H, Muehlenbachs K (eds) Links between Geological Processes Microbial Activities and Evolution of Life. Springer, Berlin, pp 237–280

    Chapter  Google Scholar 

  7. Rastogi G, Osman S, Vaishampayan PA, Andersen GL, Stetler LD, Sani RK (2010) Microbial diversity in uranium mining-impacted soils as revealed by high density 16S microarray and clone library. Microb Ecol 59:94–108

    Article  PubMed  CAS  Google Scholar 

  8. Southam G, Saunders JA (2005) The geomicrobiology of ore deposits. Econ Geol 100:1067–1084

    Article  CAS  Google Scholar 

  9. Rastogi G, Osman S, Kukkadapu R, Engelhard M, Vaishampayan PA, Andersen GL, Sani RK (2010) Microbial and mineralogical characterizations of soils collected from the deep biosphere of the former Homestake gold mine, South Dakota. Microb Ecol 60(3):539–550

    Article  PubMed  CAS  Google Scholar 

  10. Akob DM, Mills HJ, Kostka JE (2007) Metabolically active microbial communities in uranium-contaminated subsurface sediments. FEMS Microbiol Ecol 59:95–107

    Article  PubMed  CAS  Google Scholar 

  11. Geissler A, Selenska-Pobell S (2005) Addition of U(VI) to a uranium mining waste sample and resulting changes in the indigenous bacterial community. Geobiology 3:275–285

    Article  CAS  Google Scholar 

  12. Radeva G, Selenska-Pobell S (2005) Bacterial diversity in water samples from uranium wastes as demonstrated by 16S rDNA and RISA retrievals. Can J Microbiol 51:910–923

    Article  PubMed  CAS  Google Scholar 

  13. Nedelkova M, Radeva G, Selenska-Pobell S (2005) Molecular bacterial diversity in water at the deep-well monitoring site at Tomsk-7, In: Tsang CF, Apps J (eds), Developments in water science. Underground injection science and technology, vol 52. Elsevier, Amsterdam, p 521–536.

  14. Selenska-Pobell S, Kampf G, Flemming K, Radeva G, Satchanska G (2001) Bacterial diversity in soil samples from two uranium waste piles as determined by rep-APD, RISA and 16S rDNA retrieval. Antonie Van Leeuwenhoek 79:149–161

    Article  PubMed  CAS  Google Scholar 

  15. Selenska-Pobell S (2002) Diversity and activity of bacteria in uranium waste piles. In: Keith-Roach M, Livens F (eds) Interactions of microorganisms with radionuclides. Elsevier Sciences, Oxford, pp 225–253

    Chapter  Google Scholar 

  16. Islam E, Sar P (2011) Culture-dependent and -independent molecular analysis of the bacterial community within uranium ore. J Basic Microbiol 51:1–13

    Article  Google Scholar 

  17. Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320(5879):1034–1039

    Article  PubMed  CAS  Google Scholar 

  18. Merroun ML, Selenska-Pobell S (2008) Bacterial interactions with uranium: an environmental perspective. J Contam Hydrol 102:285–295

    Article  PubMed  CAS  Google Scholar 

  19. Desai C, Parikh RY, Vaishnav T, Shouche YS, Madamwar D (2009) Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Res Microbiol 160(1):1–9

    Article  PubMed  CAS  Google Scholar 

  20. Herrera A, Hery M, Stach JEM, Jaffre T, Normand P, Navarro E (2007) Species richness and phylogenetic diversity comparisons of soil microbial communities affected by nickel-mining and revegetation efforts in New Caledonia. Eur J Soil Biol 43(2):130–139

    Article  CAS  Google Scholar 

  21. Islam E, Dhal PK, Kazy SK, Sar P (2011) Molecular analysis of bacterial communities in uranium ores and surrounding soils from Banduhurang open cast uranium mine, India: a comparative study. J Envtl Sci Health A 46:271–280

    Article  CAS  Google Scholar 

  22. Joshi SR, Chauhan M, Sharma GD, Mishra RR (1991) Effect of deforestation on microbes, VAM fungi and their enzymatic activity in Eastern Himalaya. In: Rajwas GS (ed) Studies in Himalayan Ecobiology. Today and Tommorows Publication, New Delhi, pp 141–152

    Google Scholar 

  23. Joshi SR, Kumar R, Saikia P, Bhagobaty RK, Thokchom S (2009) Impact of roadside pollution on microbial activities in sub-tropical forest soil of North East India. Res J Environ Sci 4(3):280–287

    Article  Google Scholar 

  24. Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67(1):75–81

    Article  PubMed  CAS  Google Scholar 

  25. Lloyd JR, Renshaw JC (2005) Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies. Curr Opin Biotechnol 16:254–260

    Article  PubMed  CAS  Google Scholar 

  26. Brooks SC (2001) Waste characteristics of the former S-3 ponds and outline of uranium chemistry relevant to NABIR Field Research Center Studies. Technical Report, NABIR FRC

  27. Wu W-M, Carley J, Fienen M, Mehlhorn T, Lowe K, Nyman J, Luo J, Gentile ME, Rajan R, Wagner D, Hickey RF, Gu B, Watson D, Cirpka OA, Kitanidis PK, Jardine PM, Criddle CS (2006) Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 1. Conditioning of a treatment zone. Environ Sci Technol 40:3978–3985

    Article  PubMed  CAS  Google Scholar 

  28. Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River, p 600

    Google Scholar 

  29. Arey JS, Seaman JC, Bertsch PM (1999) Immobilization of uranium in contaminated sediments by hydroxyapatite addition. Environ Sci Technol 33:337–342

    Article  CAS  Google Scholar 

  30. Istok JD, Senko JM, Krumholz LR, Watson D, Bogle MA, Peacock A, Chang Y-J, White DC (2004) In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environ Sci Technol 38:468–475

    Article  PubMed  CAS  Google Scholar 

  31. Wu W-M, Carley J, Luo J, Ginder-Vogel MA, Cardenas E, Leigh MB, Hwang C, Kelly SD, Ruan C, Wu L, Van Nostrand J, Gentry T, Lowe K, Mehlhorn T, Carroll S, Luo W, Fields MW, Gu B, Watson D, Kemner KM, Marsh T, Tiedje J, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle CS (2007) In situ bioreduction of uranium(VI) to submicromolar levels and reoxidation by dissolved oxygen. Environ Sci Technol 41:5716–5723

    Article  PubMed  CAS  Google Scholar 

  32. Beazley MJ, Martinez RJ, Sobecky PA, Webb SM, Taillefert M (2007) Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface. Environ Sci Technol 41:5701–5707

    Article  PubMed  CAS  Google Scholar 

  33. Anderson C, Pedersen K (2003) In situ growth of Gallionella biofilms and partitioning of lanthanides and actinides between biological material and ferric oxyhydroxides. Geobiology 1:169–178

    Article  CAS  Google Scholar 

  34. Fredrickson JK, Zachara JM, Balkwill DL et al (2004) Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford Site, Washington State. Appl Environ Microbiol 70:4230–4241

    Article  PubMed  CAS  Google Scholar 

  35. Martinez RJ, Beazley J, Teillefert M, Arakaki AK, Skolnick J, Sobecky PA (2007) Aerobic uranium(VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils. Environ Microbiol 9:3122–3133

    Article  PubMed  CAS  Google Scholar 

  36. Raff J, Soltmann U, Matys S, Selenska-Pobell S, Böttcher H, Pompe W (2003) Biosorption of uranium and copper by biocers. Chem Mater 15:240–244

    Article  CAS  Google Scholar 

  37. Raju D, Selvem AP, Virnave SN (1989) Characterisation of the upper Cretaceous lower Mahadek sandstone and its uranium mineralisation in the Domiasiat-Gomaghat Pdengshakap area, Meghalaya, India. Expl Res Atom Miner 2:1–27

    Google Scholar 

  38. Sen DB, Sachan AS, Padhi AK, Mathur SK (2002) Uranium exploration in the Cretaceous Mahadek sediments of the Meghalaya Plateau. Expl Res Atom Miner 14:29–58

    CAS  Google Scholar 

  39. Lloyd JR, Renshaw JC, May I, Livens FR, Burke IT, Mortimerc RJG, Morris K (2005) Biotransformation of radioactive waste: microbial reduction of actinides and fission products. J Nucl Radiochem Sci 6:17–20

    CAS  Google Scholar 

  40. Wasserman H, Solomon N (1982) Killing our own: the disaster of America’s experience with atomic radiation. Delacorte Press, New York

    Google Scholar 

  41. Japan earthquake: Explosion at Fukushima nuclear plant. BBC-Asia Pacific. http://www.bbc.co.uk/news/world-asia-pacific-12720219. Accessed 18 April 2012

  42. Bachofen R, Ferloni P, Flynn I (1998) Microorganisms in the subsurface. Microbiol Rev 153:1–22

    Google Scholar 

  43. Pedersen K (1996) Investigations of subterranean bacteria in deep crystalline bedrock and their importance for the disposal of nuclear waste. Can J Microbiol 42:382–391

    Article  Google Scholar 

  44. Stroes-Gascoyne S, West J (1996) An overview of microbial research related to high-level nuclear waste disposal with emphasis on the Canadian concept for the disposal of nuclear fuel waste. Can J Microbiol 42:349–366

    Article  CAS  Google Scholar 

  45. Valenzuela L, Chi A, Beard S, Orell A, Guiliani N, Shabanowitz J, Hunt DF, Jerez CA (2006) Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol Adv 24:197–211

    Article  PubMed  CAS  Google Scholar 

  46. Lopez-Maury L, Garcia-Dominguez M, Florencio FJ, Reyes JC (2002) A two component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp. PCC 6803. Mol Microbiol 43:247–256

    Article  PubMed  CAS  Google Scholar 

  47. Eitinger T, Mandrand-Berthelot M-A (2000) Nickel transport systems in microorganisms. Arch Microbiol 173:1–9

    Article  PubMed  CAS  Google Scholar 

  48. Schmidt A, Haferburg G, Sineriz M, Merten D, Buchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erde Geochem 65:131–144

    Article  CAS  Google Scholar 

  49. Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467

    Article  PubMed  CAS  Google Scholar 

  50. Banaszak J, Rittmann B, Reed D (1999) Subsurface interactions of actinide species and microorganisms: implications for the bioremediation of actinide-organic mixtures. J Radioanal Nucl Chem 241:385–435

    Article  CAS  Google Scholar 

  51. Francis A (1998) Biotransformation of uranium and other actinides in radioactive wastes. J Alloy Comp 271–273:78–84

    Article  Google Scholar 

  52. Lloyd J, Lovley D (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  PubMed  CAS  Google Scholar 

  53. Nies D (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  54. Beller HR (2005) Anaerobic, nitrate-dependent oxidation of U(IV) oxide minerals by the chemoöithoauthotrophic bacterium Thiobacillus denitrificans. Appl Environ Microbiol 71(4):2170–2174

    Article  PubMed  CAS  Google Scholar 

  55. Lack J, Chaudhuri S, Kelly S, Kemner K, O′Connor S, Coates J (2002) Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II). Appl Environ Microbiol 68:2704–2710

    Article  PubMed  CAS  Google Scholar 

  56. Lovley DR (1993) Dissimilatory metal reduction. Ann Rev Microbiol 47:263–290

    Article  CAS  Google Scholar 

  57. Shelobolina E, Sullivan S, O ′Neill K, Nevin K, Lovley D (2004) Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid resistant bacterium from low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranaea sp. nov. Appl Environ Microbiol 70:2959–2965

    Article  PubMed  CAS  Google Scholar 

  58. Kalinowski BE, Oskarsson A, Albinsson Y, Arlinger J, Ödegaard-Jensen A, Andlid T, Pedersen K (2004) Microbial leaching of uranium and other trace elements from shale mine tailings at Ranstad. Geoderma 122:177–194

    Article  CAS  Google Scholar 

  59. Hafez M, Ibrahim M, Abdel-Razek A, Abu-Shady M (2002) Biosorption of some ions on different bacterial species from aqueous and radioactive waste solutions. J Radioanal Nucl Chem 252:179–185

    Article  CAS  Google Scholar 

  60. Selenska-Pobell S, Panak P, Miteva V, Boudakov I, Bernhard G, Nitsche H (1999) Selective accumulation of heavy metals by three indigenous Bacillus strains, B. cereus, B. megatherium and B. sphaericus, from drain waters of a uranium waste pile. FEMS Microbiol Ecol 29:59–67

    Article  CAS  Google Scholar 

  61. Vieira R, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24

    PubMed  CAS  Google Scholar 

  62. Francis AJ, Gillow JB, Dodge CJ, Harris R, Beveridge TJ, Papenguth HW (2004) Uranium association with halophilic and non-halophilic bacteria and archaea. Radiochim Acta 92:481–488

    Article  CAS  Google Scholar 

  63. McLean J, Beveridge T (2001) Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  PubMed  CAS  Google Scholar 

  64. Merroun ML, Hennig C, Rossberg A, Reich T, Selenska-Pobell S (2003) Characterization of U(VI)-Acidithiobacillus ferrooxidans complexes by using EXAFS, transmission electron microscopy and energy-dispersive X-ray analysis. Radiochim Acta 91:583–591

    Article  CAS  Google Scholar 

  65. Suzuki Y, Banfield J (2004) Resistance to, and accumulation of, uranium by bacteria from a uranium-contaminated site. Geomicrobiol J 21:113–121

    Article  CAS  Google Scholar 

  66. Douglas S, Beveridge T (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microb Ecol 26:79–88

    Article  CAS  Google Scholar 

  67. Macaskie L, Empson R, Cheetham A, Grey C, Scarnulis A (1992) Uranium bioaccumulation by Citrobacter sp. as a result of enzymatically mediated growth of polycrystalline HUO2PO4. Science 257:782–784

    Article  PubMed  CAS  Google Scholar 

  68. Renninger N, Mc Mahon K, Knopp R, Nitsche H, Clark D, Keasling J (2001) Uranyl precipitation by biomass from an enhanced biological phosphorus removal reactor. Biodegradation 12:401–410

    Article  PubMed  CAS  Google Scholar 

  69. Renninger N, Knopp R, Nitsche H, Clark D, Keasling J (2004) Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Appl Environ Microbiol 70:7404–7412

    Article  PubMed  CAS  Google Scholar 

  70. Pedersen K (2005) Microorganisms and their influence on radionuclide migration in igneous rock environments. JNRS J 6:11–15

    CAS  Google Scholar 

  71. Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604

    Article  CAS  Google Scholar 

  72. Kumar A (2010) KPM Uranium mining in Meghalaya: a controversial project. http://www.pragoti.in/node/4002. Accessed 19 April 2012

  73. Crozier RH, Agapow P-M, Pedersen K (1999) Towards complete biodiversity assessment: an evaluation of the subterranean bacterial communities in the Oklo region of the sole surviving natural nuclear reactor. FEMS Microbiol Ecol 28:325–334

    Article  CAS  Google Scholar 

  74. Fields MW, Yan T, Rhee S-K, Carroll SL, Jardine PM, Watson DB, Criddle CS, Zhou J (2005) Impacts on microbial communities and cultivable isolates from groundwater contaminated with high levels of nitric acid-uranium waste. FEMS Microbiol Ecol 53:417–428

    Article  PubMed  CAS  Google Scholar 

  75. Geissler A (2007) Prokaryotic microorganisms in uranium mining waste piles and their interactions with uranium and other heavy metals. Dissertation, TU Bergakademie Freiberg University

  76. North N, Dollhopf S, Petrie L, Istok J, Balkwill D, Kostka J (2004) Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Appl Environ Microbiol 70:4911–4920

    Article  PubMed  CAS  Google Scholar 

  77. Reardon CL, Cummings DE, Petzke LM, Kinsall BL, Watson DB, Peyton BM, Geesey GG (2004) Composition and diversity of microbial communities recovered from surrogate minerals incubated in an acidic uranium-contaminated aquifer. Appl Environ Microbiol 70:6037–6046

    Article  PubMed  CAS  Google Scholar 

  78. Satchanska G, Golovinsky E, Selenska-Pobell S (2004) Bacterial diversity in a soil sample from uranium mining waste pile as estimated via a culture-independent 16S rDNA approach. Compt Rend Acad Bulg Sci 57:75–82

    CAS  Google Scholar 

  79. Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2003) Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment. Appl Environ Microbiol 69:134–1337

    Google Scholar 

  80. Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2004) Enzymatic U(VI) reduction by Desulfosporosinus species. Radiochim Acta 92:11–16

    Article  CAS  Google Scholar 

  81. Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2005) Direct microbial reduction and subsequent preservation of uranium in natural near-surface sediment. Appl Environ Microbiol 7:1790–1797

    Article  Google Scholar 

  82. Zhang H, Yang M, Shi W, Zheng Y, Sha T, Zhao Z (2007) Bacterial diversity in mine tailings compared by cultivation and cultivation-independent methods and their resistance to lead and cadmium. Microb Ecol 54:705–712

    Article  PubMed  CAS  Google Scholar 

  83. Roane TM, Kellogg ST (1996) Characterization of bacterial communities in heavy metal contaminated soils. Can J Microbiol 42:593–603

    Article  PubMed  CAS  Google Scholar 

  84. Holmes DE, Finneran KT, O’Neil RA, Lovley DR (2002) Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68:2300–2306

    Article  PubMed  CAS  Google Scholar 

  85. Brodie EL, Desantis TZ, Joyner DC, Baek SM, Larsen JT et al (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72:6288–6298

    Article  PubMed  CAS  Google Scholar 

  86. Cardenas E, Wu WM, Leigh MB, Carley J, Carroll S et al (2008) Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. Appl Environ Microbiol 74:3718–3729

    Article  PubMed  CAS  Google Scholar 

  87. Michalsen MM, Peacock AD, Spain AM, Smithgal AN, White DC et al (2007) Changes in microbial community composition and geochemistry during uranium and technetium bioimmobilization. Appl Environ Microbiol 73:5885–5896

    Article  PubMed  CAS  Google Scholar 

  88. Nazina TN, Kosareva IM, Petrunyaka VV et al (2004) Microbiology of formation waters from the deep repository of liquid radioactive wastes Severnyi. FEMS Microbiol Ecol 49:97–107

    Article  PubMed  CAS  Google Scholar 

  89. Sar P, Dhal PK, Islam E, Kazy SK (2007) Molecular analysis of microbial community structure and diversity in contaminated and non contaminated sites of uranium mine area at Jaduguda, India. Adv Mater Res 20–21:413–416

    Article  Google Scholar 

  90. Choudhary S, Sar P (2011) Identification and characterization of uranium accumulation potential of a uranium mine isolated Pseudomonas strain. World J Microbiol Biotechnol 27:1795–1801

    Article  CAS  Google Scholar 

  91. Dhal PK, Islam E, Kazy SK, Sar P (2011) Culture-independent molecular analysis of bacterial diversity in uranium-ore/-mine waste-contaminated and non-contaminated sites from uranium mines. 3 Biotech 1:261–272

    Article  PubMed  Google Scholar 

  92. Kumar R, Joshi SR, Acharya C (2008) Metal tolerant Bacillus and Pseudomonas from uranium rich soils of Meghalaya. Res J Biotechnol, Special Issue, pp 345–350. http://dspace.nehu.ac.in/bitstream/1/1845/1/ISBT%2c%202009%20paper%20%2813%29.pdf. Accessed 23 April 2012

  93. Kumar R, Acharya C, Joshi SR (2011) Isolation and analyses of uranium tolerant Serratia marcescens strains and their utilization for aerobic uranium U(VI) bioadsorption. J Microbiol 49(4):568–574

    Article  PubMed  CAS  Google Scholar 

  94. Kumar R, Nongkhlaw M, Acharya C, Joshi SR (2012) Uranium (U)-tolerant bacterial diversity from U ore deposits of Domiasiat in North-East India and their prospective utilisation in bioremediation. Microbes Environ. doi:10.1264/jsme2.ME12074

  95. Nongkhlaw M, Kumar R, Acharya C, Joshi SR (2012) Occurrence of horizontal gene transfer of PIB-type ATPase genes among bacteria isolated from an uranium rich deposit of Domiasiat in North East India. PLoS One 7(10):e48199. doi:10.1371/journal.pone.0048199

  96. Sarma B, Acharya C, Joshi SR (2012) Plant growth promoting and metal bioadsorption activity of metal tolerant Pseudomonas aeruginosa isolate characterized from uranium ore deposit. Proc Natl Acad Sci India Sect B Biol Sci. doi:10.1007/s40011-012-0136-8

  97. Kumar R (2012) Characterization of metal tolerant bacteria from soils of Domiasiat area of Meghalaya. Dissertation, North Eastern Hill University, India

  98. Selenska-Pobell S, Flemming K, Tzvetkova T, Raff J, Schnorpfeil M, Geissler A (2002) Bacterial communities in uranium mining waste piles and their interaction with heavy metals. In: Merkel BJ, Planer-Friedrich B, Wolkersdorfer C (eds) Uranium in the aquatic environment. Springer, Berlin, pp 455–464

    Chapter  Google Scholar 

  99. Mondani L, Benzerara K, Carrière M, Christen R, Mamindy-Pajany Y et al (2011) Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls. PLoS One 6:e25771

    Article  PubMed  CAS  Google Scholar 

  100. Merroun ML, Nedelkova M, Rossberg A, Hennig C, Selenska-Pobell S (2006) Interaction mechanisms of uranium with bacterial strains isolated from extreme habitats. Radiochim Acta 94:723–729

    Article  CAS  Google Scholar 

  101. Beazley MJ, Martinez RJ, Sobecky PA, Webb SM, Taillefert M (2009) Nonreductive Biomineralization of Uranium(VI) Phosphate Via Microbial Phosphatase Activity in Anaerobic Conditions. Geomicrobiol J 7:431–441

    Article  Google Scholar 

  102. Wu W-M, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Caroll S, Pace MN, Nyman J, Luo J, Gentile ME, Fields MW, Hickey RF, Gu B, Watson D, Cirpka OA, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle CS (2006) Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ Sci Technol 40:3986–3995

    Article  PubMed  CAS  Google Scholar 

  103. Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

RK and SRJ acknowledge the financial support received from Board of Research in Nuclear Sciences-BARC, Mumbai, and MN acknowledge the financial support received from Department of Biotechnology (DBT), Government of India, for carrying out the present study. RK acknowledges S. Tripathy, IIT Kharagpur for help in GIS map and Jeremy Dkhar, North-Eastern Hill University for assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santa Ram Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Nongkhlaw, M., Acharya, C. et al. Bacterial Community Structure from the Perspective of the Uranium Ore Deposits of Domiasiat in India. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 83, 485–497 (2013). https://doi.org/10.1007/s40011-013-0164-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-013-0164-z

Keywords

Navigation