Skip to main content
Log in

Bioleaching of uranium from low-grade uranium ore with a high fluorine content by indigenous microorganisms and their community structure analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Aiming at recovery of uranium (U) from low-grade uranium ore with a high fluorine content, column bioleaching of uranium extraction with an indigenous mesophilic consortium was studied. The performance of the bacterial community and the effect of chemical parameters on column bioleaching of uranium were investigated. The results showed that U extraction reached a high value of 95.69%, including acid preleaching (65.53%) and bioleaching (30.16%), in a 124-day period of the leaching process. The composition and diversity of the bacterial community were found to be significantly changing in the acid preleaching and bioleaching stages; nevertheless, they existed in residue and pregnant leaching solution samples for the same stage and showed little difference. Additionally, dominant genera in the solid samples, including Stenotrophomonas, Pseudomonas, Brevundimonas Clostridium_sensu_stricto, Bacillus, Clostridium XI, and Acidithiobacillus, and the Acidithiobacillus genus were ubiquitous throughout the leaching column, which was in favour of U extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sun J, Li G, Li Q, Wang Y, Ma J, Pang C, Ma J (2020) Impacts of operational parameters on the morphological structure and uranium bioleaching performance of bio-ore pellets in one-step bioleaching by Aspergillus niger. Hydrometallurgy 195:105378

    Article  CAS  Google Scholar 

  2. Wang X, Liao B, Nie S et al (2021) Improvement of uranium bioleaching from uranium embedded in granite using microwave pretreatment. J Radioanal Nucl Chem 329:913–922

    Article  CAS  Google Scholar 

  3. Mishra A, Pradhan N, Kar R, Sukla L, Mishra B (2009) Microbial recovery of uranium using native fungal strains. Hydrometallurgy 95:175–177

    Article  CAS  Google Scholar 

  4. Pal S, Pradhan D, Das T, Sukla L, Chaudhury GR (2010) Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans. Indian J microbiol 50:70–75

    Article  CAS  Google Scholar 

  5. Qiu G, Li Q, Yu R, Sun Z, Liu Y, Chen M, Yin H, Zhang Y, Liang Y, Xu L (2011) Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium. Bioresour Technol 102:4697–4702

    Article  CAS  Google Scholar 

  6. Zhou Z, Yang Z, Sun Z, Chen G, Xu L, Liao Q (2019) Optimization of bioleaching high-fluorine and low-sulfur uranium ore by response surface method. J Radioanal Nucl Chem 322:781–790

    Article  CAS  Google Scholar 

  7. Ma L, Li Q, Shen L, Feng X, Xiao Y, Tao J, Liang Y, Yin H, Liu X (2016) Insights into the fluoride-resistant regulation mechanism of Acidithiobacillus ferrooxidans ATCC 23270 based on whole genome microarrays. J Ind Microbiol Biotechnol 43:1441–1553

    Article  CAS  Google Scholar 

  8. Kaksonen AH, Lakaniemi AM, Tuovinen OH (2020) Acid and ferric sulfate bioleaching of uranium ores: a review. J Clean Prod 264:121586

    Article  CAS  Google Scholar 

  9. Park S, Liang Y (2019) Bioleaching of trace elements and rare earth elements from coal fly ash. Int J Coal Sci Technol 6:74–83

    Article  CAS  Google Scholar 

  10. Torkabad MG, Keshtkar A, Safdari SJ (2018) Selective concentration of uranium from bioleach liquor of low-grade uranium ore by nanofiltration process. Hydrometallurgy 178:106–155

    Article  Google Scholar 

  11. Munoz J, Ballester A, Gonzalez F, Blazquez M (1995) A study of the bioleaching of a Spanish uranium ore Part II: orbital shaker experiments. Hydrometallurgy 38:59–78

    Article  CAS  Google Scholar 

  12. Abhilash PB (2013) Microbially assisted leaching of uranium—a review. Miner Process Extr Metall Rev 34(2):81–113

    Article  CAS  Google Scholar 

  13. Hussien S (2020) Microbial leaching of El-Sella mineralisation by Aspergillus clavatus- a fact of fungal–uranium interface. Int J Environ Stud 77(2):275–296

    Article  CAS  Google Scholar 

  14. Attia RM, Sallam OR, Abbas AEA et al (2022) Comparative evaluation of chemical and bio techniques for uranium leaching from low grade sandstone rock sample, Abu Thor, southwestern Sinai Egypt. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-022-08621-6

    Article  Google Scholar 

  15. Sun J, Li Q, Li T, Xu K, Cui Z, Li G (2022) Insights into formation and dissolution mechanism of bio-ore pellets in the one-step uranium leaching process by Aspergillus niger. Miner Eng 184:107672

    Article  CAS  Google Scholar 

  16. Li G, Sun J, Li F, Wang Y, Li Q (2022) Macroparticle-enhanced bioleaching of uranium using Aspergillus niger. Miner Eng 180:107493

    Article  CAS  Google Scholar 

  17. Peng Z, Yu R, Qiu G, Qin W, Gu G, Wang Q, Qian L, Liu X (2013) Really active form of fluorine toxicity affecting Acidithiobacillus ferrooxidans activity in bioleaching uranium. T Nonferr Metal Soc 23:812–817

    Article  CAS  Google Scholar 

  18. Zokaei-Kadijani S, Safdari J, Mousavian M, Rashidi A (2013) Study of oxygen mass transfer coefficient and oxygen uptake rate in a stirred tank reactor for uranium ore bioleaching. Ann Nucl Energy 53:280–287

    Article  CAS  Google Scholar 

  19. Amin M, Elaassy I, El-Feky M, Sallam A, Talaat M, Kawady N (2014) Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai Egypt. J Environ Radioact 134:76–82

    Article  CAS  Google Scholar 

  20. Tavakoli H, Abdollahy M, Ahmadi S, Darban A (2017) Kinetics of uranium bioleaching in stirred and column reactors. Miner Eng 111:36–46

    Article  Google Scholar 

  21. Tavakoli H, Abdollahy M, Ahmadi S, Darban A (2017) Enhancing recovery of uranium column bioleaching by process optimization and kinetic modeling. T Nonferr Metal Soc 27:2691–2703

    Article  CAS  Google Scholar 

  22. Tavakoli H, Abdollahy M, Ahmadi S, Darban A (2017) The effect of particle size, irrigation rate and aeration rate on column bioleaching of uranium ore. Russ J Non-Ferr Met 58:188–199

    Article  Google Scholar 

  23. Wang X, Liu Y, Sun Z, Li J, Chai L, Min X, Guo Y, Li P, Zhou Z (2017) Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes. J Radioanal Nucl Chem 314:251–258

    Article  CAS  Google Scholar 

  24. Wang X, Li P, Liu Y, Sun Z, Chai L, Min X, Guo Y, Zheng Z, Ke Y, Liang Y (2018) Uranium bioleaching from low-grade carbonaceous-siliceous-argillaceous type uranium ore using an indigenous Acidithiobacillus ferrooxidans. J Radioanal Nucl Chem 317:1033–1040

    Article  CAS  Google Scholar 

  25. Chen G, Sun Z, Liu Y (2016) Continued multicolumns bioleaching for low grade uranium ore at a certain uranium deposit. J Nanomater 2016:1–7

    Google Scholar 

  26. Abdelsalam SM, Kamal NM, Harpy NM, Hewedy MA, El-Aassy IE (2021) Bioleaching studies of uranium in a rock sample from sinai using some native streptomyces and aspergillus species. Curr Microbiol 78(2):590–603

    Article  CAS  Google Scholar 

  27. Liu X, Chen B, Chen J, Zhang M, Wen J, Wang D, Ruan R (2016) Spatial variation of microbial community structure in the Zijinshan commercial copper heap bioleaching plant. Miner Eng 94:76–82

    Article  Google Scholar 

  28. Xu J, He J, Wang M, Li L (2018) Cultivation and stable operation of aerobic granular sludge at low temperature by sieving out the batt-like sludge. Chemosphere 211:1219–1227

    Article  CAS  Google Scholar 

  29. MagočT SS (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  Google Scholar 

  30. Qin W, Zhen S, Yan Z, Campbell M, Wang J, Liu K, Zhang Y (2009) Heap bioleaching of a low-grade nickel-bearing sulfide ore containing high levels of magnesium as olivine, chlorite and antigorite. Hydrometallurgy 98:58–65

    Article  CAS  Google Scholar 

  31. Youlton B, Kinnaird J (2013) Gangue–reagent interactions during acid leaching of uranium. Miner Eng 52:62–73

    Article  CAS  Google Scholar 

  32. Sicupira L, Veloso T, Reis F, Leão V (2011) Assessing metal recovery from low-grade copper ores containing fluoride. Hydrometallurgy 109:202–210

    Article  CAS  Google Scholar 

  33. Jia Y, Sun H, Chen D, Gao H, Ruan R (2016) Characterization of microbial community in industrial bioleaching heap of copper sulfide ore at Monywa mine, Myanmar. Hydrometallurgy 164:355–361

    Article  CAS  Google Scholar 

  34. Jia Y, Tan Q, Sun H, Zhang Y, Gao H, Ruan R (2019) Sulfide mineral dissolution microbes: community structure and function in industrial bioleaching heaps. Green Energy Environ 4:29–37

    Article  Google Scholar 

  35. Islam E, Sar P (2016) Diversity, metal resistance and uranium sequestration abilities of bacteria from uranium ore deposit in deep earth stratum. Ecotoxicol Environ Saf 127:12–21

    Article  CAS  Google Scholar 

  36. Kazy S, Sar P, D’souza S (2008) Studies on uranium removal by the extracellular polysaccharide of a Pseudomonas aeruginosa strain. Bioremediat J 12:47–53

    Article  CAS  Google Scholar 

  37. Zeng T, Zhang S, Gao X, Wang G, Lens P, Xie S (2018) Assessment of bacterial community composition of anaerobic granular sludge in response to short-term uranium exposure. Microb Ecol 76:648–659

    Article  CAS  Google Scholar 

  38. Ma S, Ma H, Hu H, Ren H (2019) Effect of mixing intensity on hydrolysis and acidification of sewage sludge in two-stage anaerobic digestion: characteristics of dissolved organic matter and the key microorganisms. Water Res 148:359–367

    Article  CAS  Google Scholar 

  39. Li X, Ding C, Liao J, Lan T, Li F, Zhang D, Yang J, Yang Y, Luo S, Tang J (2014) Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism. J Environ Radioact 135:6–12

    Article  CAS  Google Scholar 

  40. Gallagher T, Phan J, Oliver A, Chase A, England W, Wandro S, Hendrickson C, Riedel S, Whiteson K (2019) Cystic fibrosis-associated Stenotrophomonas maltophilia strain-specific adaptations and responses to pH. J Bacteriol 201:7–23

    Article  Google Scholar 

  41. Sar P, D’souza S (2001) Biosorptive uranium uptake by a Pseudomonas strain: characterization and equilibrium studies. J Chem Technol Biotechnol 76(12):1286–1294

    Article  CAS  Google Scholar 

  42. Choudhary S, Sar P (2011) Identification and characterization of uranium accumulation potential of a uranium mine isolated Pseudomonas strain. World J Microbiol Biotechnol 27:1795–1801

    Article  CAS  Google Scholar 

  43. Yang X, Wang S, Zhou L (2012) Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6. Bioresour Technol 104:65–72

    Article  CAS  Google Scholar 

  44. Kavitha S, Selvakumar R, Sathishkumar M et al (2009) Nitrate removal using Brevundimonas diminuta MTCC 8486 from ground water. Water Sci Technol 60(2):517–524

    Article  CAS  Google Scholar 

  45. Jalali F, Fakhari J, Zolfaghari A (2019) Response surface modeling for lab-scale column bioleaching of low-grade uranium ore using a new isolated strain of acidithiobacillus ferridurans. Hydrometallurgy 185:194–203

    Article  CAS  Google Scholar 

  46. Huang T, Li D (2014) Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy—a presentation. Biotech Rep 4:107–119

    Article  Google Scholar 

  47. Huang Z, Feng S, Tong Y et al (2019) Enhanced “contact mechanism” for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus. J Environ Manage 242:11–21

    Article  CAS  Google Scholar 

  48. Huang M, Wang Y, Yin S, Wu A (2015) Enhanced column bioleaching of copper sulfides by forced aeration. Adv Mater Res 1130:400–405

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (No. 2012AA061504) , the National Natural Science Foundation of China (42267031), Basic Research Project of China Atomic Energy Agency (JCKY2019401D003), Youth Science Foundation of Jiangxi Province (20202BABL213015), State Key Laboratory of Nuclear Resources and Environment (East China University of Technology) (2022NRE22), and East China University of Technology national college student innovation training program (202010405005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongkui Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Zhou, Z., Ge, Y. et al. Bioleaching of uranium from low-grade uranium ore with a high fluorine content by indigenous microorganisms and their community structure analysis. J Radioanal Nucl Chem 332, 387–398 (2023). https://doi.org/10.1007/s10967-022-08734-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08734-y

Keywords

Navigation