Skip to main content

Advertisement

Log in

Morphological and in vitro investigation of core–shell nanostructures of carvedilol using quality by design

  • Research Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

The present study aimed to develop an ideal nanostructured delivery (propylene glycol monocaprylate-polycaprolactone core–shell nanostructures) for a poorly soluble drug by quality-by-design (QbD) approach. Carvedilol (CVD) loaded polymeric nanocapsules were formulated by 32 factorial designs and established the functional relationships between the operating independent variables. An increase in polycaprolactone (PCL) content led to a rise in mean particle size, while the effect of Lutrol F127 was found statistically insignificant. Furthermore, it was observed that as the level of Lutrol F127 increases zeta potential decreases. However different levels of PCL did not significantly affected the zeta potential. The in vitro release of carvedilol from nanocapsule is contributed by the coupling of diffusion and erosion mechanism. Scanning electron microscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) images showed the spherical nature of prepared optimized formulations OF1–OF3. TEM images illustrated spherical nanocapsules with a clearly distinctive oil core and PCL coating. The thickness of the core varied from 14.78 to 54.21 nm. The smooth surface of nanocapsules observed under AFM studies indicated no surface crystallization of CVD or other excipients used in preparing optimized formulations. The root mean square roughness and the average volume of optimized nanocapsules (OF1–OF3) ranged between 14.42–23.26 nm and 24.41–49.91 µm3, respectively. This study revealed the effectiveness of QbD for the preparation of optimized nanocapsules of CVD having desired attributes in the shortest possible time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alanazi FK, Haq N, Radwan AA, Alsarra IA, Shakeel F (2014) Potential of lipid nanoemulsion for drug delivery of cholesteryl-hexahydrophthaloyl-5-fluorouracil. J Drug Deliv Sci Technol 24:459–463

    Article  CAS  Google Scholar 

  • Alexandridis P, Hatton TA (1995) Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Coll Surf A 96:1–46

    Article  CAS  Google Scholar 

  • Arifin DY, Lee LY, Wang CH (2006) Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv Drug Deliv Rev 58:1274–1325

    Article  CAS  PubMed  Google Scholar 

  • Bhagat C, Singh SK, Verma PRP, Singh N, Verma S, Ahsan MN (2013) Crystalline and amorphous carvedilol-loaded nanoemulsions: formulation optimisation using response surface methodology. J Exp Nanosci 8:971–992

    Article  CAS  Google Scholar 

  • Blouza IL, Charcosset C, Sfar S, Fessi H (2006) Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int J Pharm 325:124–131

    Article  Google Scholar 

  • Cándida L, Laurent MH, Francisco O, José LVJ, Maria JA (1993) Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res 10:80–87

    Article  Google Scholar 

  • Couvreur P, Barratt G, Fattal E, Vauthier C (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carr Syst 19:99–134

    Article  CAS  Google Scholar 

  • Dinesh Kumar V, Verma PRP, Singh SK (2015) Development and evaluation of biodegradable polymeric nanoparticles for the effective delivery of quercetin using a quality by design approach. LWT Food Sci Technol 61:330–338

    Article  CAS  Google Scholar 

  • Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20

    Article  CAS  PubMed  Google Scholar 

  • FDA (Food and Drug Administration) (2009) Guidance for Industry. http://www.fda.gov/downloads/Drugs/Guidances/ucm073507.pdf. Accessed on 24 June 2015

  • Ferranti V, Marchais H, Chabenat C, Orecchioni A, Lafont O (1999) Primidone-loaded poly-ε-caprolactone nanocapsules: incorporation efficiency and in vitro release profiles. Int J Pharm 193:107–111

    Article  CAS  PubMed  Google Scholar 

  • Fessi H, Puisieux P, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4

    Article  CAS  Google Scholar 

  • Ghari T, Mortazavi SA, Khoshayand MR, Kobarfard F, Gilani K (2014) Preparation, optimization, and in vitro evaluation of azithromycin encapsulated nanoparticles by using response surface methodology. J Drug Deliv Sci Technol 24:352–360

    Article  CAS  Google Scholar 

  • Grassi M, Lamberti G, Cascone S, Grassi G (2011) Mathematical modeling of simultaneous drug release and in vivo absorption. Int J Pharm 418:130–141

    Article  CAS  PubMed  Google Scholar 

  • Grillo R, dos Santos NZP, Maruyama CR, Rosa AH, de Lima R, Fraceto LF (2012) Poly(ε-caprolactone)nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231–232:1–9

    Article  PubMed  Google Scholar 

  • Hamishehkar H, Emami S, Lamei B, Valizadeh H, Jouyban A (2014) Evaluation of solubility and dissolution profile of itraconazole after cogrinding with various hydrophilic carriers. J Drug Deliv Sci Technol 24:653–658

    Article  Google Scholar 

  • Hiremath JG, Khamar NS, Palavalli SG, Rudani CG, Aitha R, Mura P (2013) Paclitaxel loaded carrier based biodegradable polymeric implants: preparation and in vitro characterization. Saudi Pharm J 21:85–91

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu TT, Wang JX, Shen ZG, Chen JF (2008) Engineering of drug nanoparticles by HGCP for pharmaceutical applications. Particuology 6:239–251

    Article  CAS  Google Scholar 

  • Javed I, Ranjha NM, Mahmood K, Kashif S, Rehman M, Usman F (2014) Drug release optimization from microparticles of poly(E-caprolactone) and hydroxypropyl methylcellulose polymeric blends: formulation and characterization. J Drug Deliv Sci Technol 24:607–612

    Article  Google Scholar 

  • Kallakunta VR, Eedara BB, Jukanti R, Ajmeera RK, Bandari S (2013) A Gelucire 44/14 and labrasol based solid self emulsifying drug delivery system: formulation and evaluation. J Pharm Investig 43:185–196

    Article  CAS  Google Scholar 

  • Klang V, Valenta C, Matsko NB (2013) Electron microscopy of pharmaceutical systems. Micron 44:45–74

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Yeo Y (2014) Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci 125:75–84

    Article  Google Scholar 

  • Liu P, Wulf OD, Laru J, Heikkilä T, van Veen B, Kiesvaara J (2013) Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions. AAPS PharmSciTech 14:748–756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mateo-Ortíz D, Mota-Aguilar DA, Florián-Algarín MA, Avilés-barreto SL, Méndez R, Velázquez C (2012) Motivating K-12 students to study pharmaceutical engineering using guided hands-on visits. Educ Chem Eng 7:e219–e229

    Article  Google Scholar 

  • Mittal G, Kumar NMVR (2009) Impact of polymeric nanoparticles on oral pharmacokinetics: a dose-dependent case study with estradiol. J Pharm Sci 98:3730–3734

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Hunter AC (2000) Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol 18:412–420

    Article  CAS  PubMed  Google Scholar 

  • Molpeceres J, Guzman M, Aberturas MR, Chacon M, Berges L (1996) Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement. J Pharm Sci 85:206–213

    Article  CAS  PubMed  Google Scholar 

  • Plapied L, Duhem N, des Rieux A, Préat V (2011) Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Coll Interface Sci 16:228–237

    Article  CAS  Google Scholar 

  • Praveen R, Singh SK, Verma PRP, George JK (2014a) Sustained delivery of cefdinir to upper gastrointestinal tract using calcium alginate beads: a formulation by design. J Pharm Investig 44:455–463

    Article  CAS  Google Scholar 

  • Praveen R, Verma PRP, Singh SK, George JK (2014b) Cross linked alginate gel beads as floating drug delivery system for cefdinir: optimization using Box-Behnken design. J Pharm Investig. doi:10.1007/s40005-014-0164-x

    Google Scholar 

  • Raval A, Parikh J, Engineer C (2010) Mechanism of controlled release kinetics from medical devices, Braz. J Chem Eng 27:211–225

    CAS  Google Scholar 

  • Saini R, Singh SK, Verma PRP (2012) Evaluation of carvedilol-loaded microsponges with nanometric pores using response surface methodology. J Exp Nanosci 9:831–850

    Article  Google Scholar 

  • Schaffazick SR, Siqueira IR, Badejo AS, Jornada DS, Pohlmann AR, Netto CR (2008) Incorporation in polymeric nanocapsules improves the antioxidant effect of melatonin against lipid peroxidation in mice brain and liver. Eur J Pharm Biopharm 69:64–71

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Verma PRP, Razdan B (2009) Development and characterization of a carvedilol-loaded self-microemulsifying delivery system. Clin Res Regul Aff 26:50–64

    Article  Google Scholar 

  • Singh B, Kapil R, Nandi M, Ahuja N (2011a) Developing oral drug delivery systems using formulation by design: vital precepts, retrospect and prospects. Expert Opin Drug Deliv 8:1341–1360

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Verma PRP, Razdan B (2011b) Atomic force microscopy, transmission electron microscopy, and photon correlation spectroscopy: three techniques for rapid characterization of optimized self-nanoemulsiying drug delivery system of glibenclamide, carvedilol, and lovastatin. J Dispers Sci Technol 32:538–545

    Article  CAS  Google Scholar 

  • Tadano S, Giri B (2011) X-ray diffraction as a promising tool to characterize bone nanocomposites. Sci Technol Adv Mater 12:1–11

    Article  Google Scholar 

  • Tomba E, Facco P, Bezzo F, Barolo M (2013) Latent variable modeling to assist the implementation of quality-by-design paradigms in pharmaceutical development and manufacturing: a review. Int J Pharm 457:283–297

    Article  CAS  PubMed  Google Scholar 

  • Ubrich N, Schmidt C, Bodmeier R, Hoffman M, Maincent P (2005) Oral evaluation in rabbits of cyclosporin-loaded Eudragit RS or RL nanoparticles. Int J Pharm 288:169–175

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Singh SK, Verma PRP (2015) Fabrication of lipidic nanocarriers of loratadine for facilitated intestinal permeation using multivariate design approach. Drug Dev Ind Pharm. doi:10.3109/03639045.2015.1052078

    Google Scholar 

  • Villemson A, Couvreur P, Gillet B, Larionova N, Gref R (2006) Dextran-poly-ε-caprolactone micro- and nanoparticles: preparation, characterization and tamoxifen solubilization. J Drug Deliv Sci Technol 16:307–313

    Article  CAS  Google Scholar 

  • Wang XZ, Liu L, Li RF, Tweedie RJ, Primrose K, Corbett J (2009) Online characterisation of nanoparticle suspensions using dynamic light scattering, ultrasound spectroscopy and process tomography. Chem Eng Res Des 87:874–884

    Article  CAS  Google Scholar 

  • Wang GD, Mallet FP, Ricard F, Heng JY (2012) Pharmaceutical nanocrystals. Curr Opin Chem Eng 1:102–107. doi:10.1016/j.coche.2011.12.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. Jerome K. George thanks Birla Institute of Technology, Mesra, Ranchi, India, to provide senior research fellowship.All the authors (Jerome K George, Sandeep Kumar Singh, and Priya Ranjan Prasad Verma) declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, J.K., Singh, S.K. & Verma, P.R.P. Morphological and in vitro investigation of core–shell nanostructures of carvedilol using quality by design. Journal of Pharmaceutical Investigation 45, 561–578 (2015). https://doi.org/10.1007/s40005-015-0204-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-015-0204-1

Keywords

Navigation