Skip to main content
Log in

Full Factorial Design and Optimization of Olmesartan Medoxomil–Loaded Oily-Core Polymeric Nanocapsules with Improved In-Vitro Stability

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

This study aims to design oily-core nanocapsules for poorly water-soluble antihypertensive drug olmesartan medoxomil (OM) and optimize systematically the in-vitro characteristics of prepared nanosystems. The study represents an organized methodology for screening and studying significant parameters affecting polymeric nanocapsule formulation and characterization.

Method

A full two-level (23) factorial design was conducted to optimize the characteristics of poly-Ɛ-caprolactone oily-core nanocapsules (ONC) which were prepared using interfacial deposition of preformed polymer technique. The selected independent variables were the concentration of polymer, aqueous/organic phase ratio, and magnetic stirring rate.

Results

The selected formulation and processing variables significantly affected the tested responses. The developed ONC formulae showed a particle size (PS) range from 180.63 ± 0.31 to 338.93 ± 0.42 nm, polydispersity index values (PDI) were < 0.5, negative zeta potential (ZP) values from 20.17 ± 0.21 to 32.83 ± 0.21 mV, and entrapment efficiency (EE) values range from 74.63 ± 0.15 to 93.37 ± 0.15%. In-vitro drug release testing showed a controlled release pattern for OM over 8 h following Hixson-Crowell model for the optimized formula. Transmission electron micrographs (TEM) showed a perfect spherical nanocapsule with a clear polymeric coat. Stability study for 3 months at refrigerated and room temperatures showed non-significant variations and excellent stability for the prepared colloidal nanocapsular dispersion in terms of particle size (PS), zeta potential (ZP), polydispersity index (PDI), and entrapment efficiency (EE).

Conclusion

It is concluded that ONC are such a promising nanosystem which can significantly improve the biopharmaceutical behavior of OM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Lee B, Kang M, Choi S, Choi B, Kim S, Lee S, et al. Solubilized formulation of olmesartan medoxomil for enhancing oral bioavailability. Arch Pharm Res. 2009;32:1629–35.

    Article  CAS  Google Scholar 

  2. Thakkar H, Patel B, Thakkar S. Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement. J Pharm Bioall Sci. 2011;3(3):426–34.

    Article  CAS  Google Scholar 

  3. Sharma R, Yasir M, Bhaskar S. Formulation and evaluation of paclitaxel loaded PSA-PEG nanoparticles. J Appl Pharm Sci. 2011;1:96–8.

    Google Scholar 

  4. Dizaj S, Vazifehasl Z, Salatin S, Adibkia K, Javadzadeh Y. Nanosizing of drugs: effect on dissolution rate. Res Pharm Sci. 2015;10(2):95–108.

    PubMed  PubMed Central  Google Scholar 

  5. Benita S. Microparticulate drug delivery systems: release kinetic models. In: Arshady R, editor. Microspheres, microcapsules and liposomes (the MML series). Citrus Books: London; 1998. p. 255–78.

    Google Scholar 

  6. Diaspro A, Krol S, Cavalleri O, Silvano D, Gliozzi A. Microscopical characterization of nanocapsules templated on ionic crystals and biological cells toward biomedical applications. IEEE Trans Nanobiosci. 2002;1(3):110–5.

    Article  Google Scholar 

  7. Mora-Huertas C, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385:113–42.

    Article  CAS  Google Scholar 

  8. Ulery B, Nair L, Laurencin C. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49:832–64.

    Article  CAS  Google Scholar 

  9. Ajala T, Femi-Oyewo M, Odeku O. The effect of formulation variables on the physicochemical and antimicrobial properties of cream formulae of Phyllanthus amarus whole plant extract. West Afr J Med. 2017;28:52–60.

    Google Scholar 

  10. Elgindy N, Mehanna M, Mohyeldin S. Self-assembled nano-architecture liquid crystalline particles as a promising carrier for progesterone transdermal delivery. Int J Pharm. 2016;501:167–79.

    Article  CAS  Google Scholar 

  11. Nasr A, Gardouh A, Ghorab M. Novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) for oral delivery of olmesartan medoxomil: design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics. 2016;8(20):1–29.

    Google Scholar 

  12. Vikram K, Chander P, Varun K, Sanyog J. Nanostructured lipid carriers of olmesartan medoxomil with enhanced oral bioavailability. Colloids Surf B: Biointerfaces. 2017;154:10–20. https://doi.org/10.1016/j.colsurfb.2017.03.006.

    Article  CAS  Google Scholar 

  13. Nagaraj K, Narendar D, Kishan V. Development of olmesartan medoxomil optimized nanosuspension using Box-Behnken design to improve oral bioavailability. Drug Dev Ind Pharm. 2017;43:1186–96. https://doi.org/10.1080/03639045.2017.1304955.

    Article  CAS  PubMed  Google Scholar 

  14. Shen J, Burgess D. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: recent developments and challenges. Drug Deliv Transl Res. 2013;3:409–15. https://doi.org/10.1007/s13346-013-0129-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hussein A. Preparation and evaluation of liquid and solid self-microemulsifying drug delivery system of mebendazole. Iraqi J Pharm Sci. 2014;23:89–100.

    Google Scholar 

  16. Zakia B, Suyang Z, Wenli Z, Junlin W. Formulation, development and bioavailability evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) of atorvastatin calcium. Int J Pharm. 2013;29:1103–13.

    Google Scholar 

  17. Narendar D, Kishan V. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Deliv. 2016;23:395–404.

    Article  Google Scholar 

  18. Nandhakumar S, Dhanaraju M, Sundar V, Heera B. Influence of surface charge on the in vitro protein adsorption and cell cytotoxicity of paclitaxel loaded poly(e-caprolactone) nanoparticles. Bull Fac Pharm Cairo Univ. 2017;55:249–58.

    Google Scholar 

  19. Badri W, Miladi K, Eddabra R, Fessi H, Elaissari A. Elaboration of nanoparticles containing indomethacin: Argan oil for transdermal local and cosmetic application. J Nanomater. 2015;1:1–9.

    Article  Google Scholar 

  20. Chorny M, Fishbein I, Danenberg H, Golomb G. Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. J Control Release. 2002;83(3):389–400.

    Article  CAS  Google Scholar 

  21. Rodriguez S, Allémann E, Fessi H, Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification diffusion and nanoprecipitation methods. Pharm Res. 2004;21(8):1428–39.

    Article  Google Scholar 

  22. Asadi H, Rostamizadeh K, Salari D, Hamidi M. Preparation of biodegradable nanoparticles of tri-block PLA-PEG-PLA copolymer and determination of factors controlling the particle size using artificial neural network. J Microencapsul. 2011;28(5):406–16.

    Article  CAS  Google Scholar 

  23. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems -a review. Trop J Pharm Res. 2013;12:255–64.

    Google Scholar 

  24. White B, Banerjee S, O’Brien S, Turro N, Herman I. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C. 2007;111:13684–90.

    Article  CAS  Google Scholar 

  25. Kothamasu P, Kanumur H, Ravur N, Maddu C, Parasuramrajam R, Thangavel S. Nanocapsules: the weapons for novel drug delivery systems. BioImpacts. 2012;2(2):71–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang W, Zhang C. Tuning the size of poly(lactic-co-glycolic acid) (PLGA) nanoparticles fabricated by nanoprecipitation. Biotechnol J. 2018;13:1700203.

    Article  Google Scholar 

  27. Asasutjarit R, Sorrachaitawatwong C, Tipchuwong N, Pouthai S. Effect of formulation compositions on particle size and zeta potential of diclofenac sodium-loaded chitosan nanoparticles. Int J Med Health Biomed Bioeng Pharm Eng. 2013;7(9):568–70.

    Google Scholar 

  28. Ajiboye A, Trivedi V, Mitchell JC. Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions. Drug Deliv Transl Res. 2018;8(6):1790–6.

    Article  CAS  Google Scholar 

  29. Awotwe-Otoo D, Zidan A, Rahman Z, Habib M. Evaluation of anticancer drug-loaded nanoparticle characteristics by nondestructive methodologies. AAPS PharmSciTech. 2012;13(2):611–22.

    Article  CAS  Google Scholar 

  30. Arun B, Narendar D, Veerabrahma K. Development of olmesartan medoxomil lipid-based nanoparticles and nanosuspension: preparation, characterization and comparative pharmacokinetic evaluation. Artif Cells Nanomed Biotechnol. 2018;46(1):126–37.

    Article  CAS  Google Scholar 

  31. Azimi B, Nourpanah P, Rabiee M, Arbab S. Poly (ε-caprolactone) fiber: an overview. J Eng Fibers Fabr. 2014;9(3):74–90.

    Google Scholar 

  32. Gombás Á, Szabó-Révész P, Regdon G Jr, Erős I. Study of thermal behaviour of sugar alcohols. J Therm Anal Calorim. 2003;73(2):615–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Waleed M. Khattab, Esmat E. Zein El-Dein, and Sanaa A. El-Gizawy. The first draft of the manuscript was written by Waleed M. Khattab and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Waleed M. Khattab.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattab, W.M., Zein El-Dein, E.E. & El-Gizawy, S.A. Full Factorial Design and Optimization of Olmesartan Medoxomil–Loaded Oily-Core Polymeric Nanocapsules with Improved In-Vitro Stability. J Pharm Innov 16, 673–687 (2021). https://doi.org/10.1007/s12247-020-09479-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09479-5

Keywords

Navigation