Skip to main content

Advertisement

Log in

Influence of IAA and ACC Deaminase Producing Fluorescent Pseudomonads in Alleviating Drought Stress in Wheat (Triticum aestivum)

  • Full-Length Research Article
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

Drought is one of the major constraints limiting agricultural production worldwide. Soil bacteria containing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and indole acetic acid (IAA) producing traits with the potential for the alleviation of drought stress in combination with plant growth promotion would be extremely useful tools in sustainable farming. The present study was undertaken with two drought-tolerant bacteria Pseudomonas fluorescens strain DPB15 and P. palleroniana strain DPB16 containing ACC deaminase activity as isolated from rainfed agriculture areas of Kumaun regions of Uttarakhand, India. There were two sets of pot trails, i.e., non-stressed (watered) and drought stressed (non-watered). The growth parameters were recorded after fifty-four days of growth. Bacterial inoculation enhanced the growth of wheat in terms of root and shoot biomass, height and foliar nutrient content in treated as compared to untreated plants. In addition, a significant increase in antioxidant activity (SOD, CAT, GPX and APX) was also observed where bacterial treatment improves the plant fitness by protecting it from the oxidative damage created by drought. A correlation study between non-enzymatic and enzymatic antioxidants demonstrated that a perfect positive significant correlation between SOD and Chl, GPX and Pro, CAT and H2O2, and CAT and TPC; a perfect negative correlation between TPC and H2O2; and for others parameters nonsignificant correlation were observed under water-stressed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24(12):1337–1344

    Article  CAS  Google Scholar 

  2. Arbona V, Hossain Z, Lopez-Climent MF, Perez-Clemente RM, Gomez-Cadenas A (2008) Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol Plant 132:452–466

    Article  PubMed  CAS  Google Scholar 

  3. Arnon DI (1949) Copper enzyme in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Article  Google Scholar 

  5. Barnawal D, Maji D, Bharti N, Chanotiya CS, Kalra A (2013) ACC deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress. J Plant Growth Regul 32:809–822

    Article  CAS  Google Scholar 

  6. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  7. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  8. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    PubMed  CAS  Google Scholar 

  9. Cappuccino JC, Sherman N (1992) Microbiology: A Laboratory Manual. Wesley Pub. Co., New York

    Google Scholar 

  10. Chakraborty U, Chakraborty BN, Chakraborty AP, Dey PL (2013) Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J Microbiol Biotechnol 29:789–803

    Article  PubMed  CAS  Google Scholar 

  11. Daryanto S, Wang L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS ONE 11:e0156362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Erdogan U, Cakmakci R, Varmazyari A, Turan M, Erdogan Y, Kitir N (2016) Role of inoculation with multi-trait rhizobacteria on strawberries under water deficit stress. Zemdirbyste (Agriculture) 103(1):67–76

    Article  Google Scholar 

  13. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase containing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  14. Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192–195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  16. Jackson ML (1973) Soil Chemical Analysis. Prentice Hall Private Ltd., New Delhi

    Google Scholar 

  17. Magnucka EG, Pietr SJ (2015) Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth. Microbiol Res 181:112–119

    Article  PubMed  CAS  Google Scholar 

  18. Michel BE (1983) Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol 72:66–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Nain LM, Yadav RC, Saxena J (2012) Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi-arid deserts. Appl Soil Ecol 59:124–135

    Article  Google Scholar 

  20. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  21. Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  22. Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA. p, Washington, p 18

    Google Scholar 

  23. Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  PubMed  CAS  Google Scholar 

  24. Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:e370

    Google Scholar 

  25. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  26. Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    Article  PubMed  CAS  Google Scholar 

  27. Singh RP, Jha P, Jha PN (2015) The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J Plant Physiol 184:57–67

    Article  PubMed  CAS  Google Scholar 

  28. Urbanek H, Kuzniak-Gebarowska E, Herka K (1991) Elicitation of defence responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Phys Plant 13:43–50

    CAS  Google Scholar 

  29. Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  30. Walkley A, Black CA (1934) An examination of different methods for determining soil organic matter and proposed modifications of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  31. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  PubMed  CAS  Google Scholar 

  32. Zieslin N, Ben-Zaken R (1993) Peroxidase activity and presence of phenolic substances in peduncle of rose flower. Plant Physiol Biochem 31:333–339

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, D., Srivastava, R. & Sharma, A.K. Influence of IAA and ACC Deaminase Producing Fluorescent Pseudomonads in Alleviating Drought Stress in Wheat (Triticum aestivum). Agric Res 7, 290–299 (2018). https://doi.org/10.1007/s40003-018-0305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-018-0305-y

Keywords

Navigation