Skip to main content
Log in

Progress of Polysaccharide-Contained Polyurethanes for Biomedical Applications

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Polyurethane (PU) has been widely examined and used for biomedical applications, such as catheters, blood oxygenators, stents, cardiac valves, drug delivery carriers, dialysis devices, wound dressings, adhesives, pacemaker, tissue engineering, and coatings for breast implants due to its mechanical flexibility, high tear strength, biocompatibility, and tailorable foams although bio-acceptability, biodegradability and controlled drug delivery to achieve the desired properties should be considered. Especially, during the last decade, the development of bio-based PUs has raised public awareness because of the concern with global plastic waste for creating more environmentally friended materials. Therefore, it is desirable to discuss polysaccharide (PS)-contained PU for the wound dressing and bone tissue engineering among bio-based PUs because PS has several advantages, such as biocompatibility, reproducibility from the natural resources, degradability, ease of incorporation of bioactive agents, ease of availability and cost-effectiveness, and structural feature of chemical modification to meet the desired needs to overcome the disadvantages of PU itself by containing the PS into the PU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mandarino MP, Salvatore JE. Polyurethane polymer; its use in fractured and diseased bones. Am J Surg. 1959;97:442–6.

    Article  CAS  PubMed  Google Scholar 

  2. Boretos JW, Pierce WS. Segmented polyurethane—a new elastomer for biomedical applications. Science. 1967;158:1481–2.

    Article  CAS  PubMed  Google Scholar 

  3. Kolff WJ, Akutsu T, Dreyer B, Norton H. Artificial heart in the chest and use of polyurethane for making hearts, valves, and aortas. ASAIO Journal. 1959;5:298–303.

    Google Scholar 

  4. LsIc C, Melo JA. Polyurethane: properties, structure and applications. New York: Nova Science Publishers; 2012.

    Google Scholar 

  5. Rusu LC, Ardelean LC, Jitariu AA, Miu CA, Streian CG. An insight into the structural diversity and clinical applicability of polyurethanes in biomedicine. Polymers (Basel). 2020;12:1197.

    Article  CAS  Google Scholar 

  6. Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater. 2021;6:1083–106.

    Article  CAS  PubMed  Google Scholar 

  7. Akindoyo JO, Beg M, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR. Polyurethane types, synthesis and applications—a review. Rsc Adv. 2016;6:114453–82.

    Article  CAS  Google Scholar 

  8. Venkateshaiah A, Padil VVT, Nagalakshmaiah M, Waclawek S, Cernik M, Varma RS. Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives. Polymers (Basel). 2020;12:512.

    Article  CAS  PubMed Central  Google Scholar 

  9. Solanki A, Das M, Thakore S. A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications. Carbohydr Polym. 2018;181:1003–16.

    Article  CAS  PubMed  Google Scholar 

  10. Li J, Chen Z, Yang X. State of the art of small-diameter vessel-polyurethane substitutes. Macromol Biosci. 2019;19:e1800482.

    Article  PubMed  Google Scholar 

  11. Bellis M. The history of polyurethane. Otto Bayer. ThoughCo. 2020.

  12. Cooper SL, Guan J. Advances in polyurethane biomaterials. Elsevier, Duxford: Woodhead Publishing; 2016.

    Google Scholar 

  13. Bonart R, Müller EH. Phase separation in urethane elastomers as judged by low-angle X-ray-scattering. II. Experimental results. J Macromol Sci Phys. 1974;10:345–57.

  14. Cohn D, Stern T, González MF, Epstein J. Biodegradable poly(ethylene oxide)/poly(epsilon-caprolactone) multiblock copolymers. J Biomed Mater Res. 2002;59:273–81.

    Article  CAS  PubMed  Google Scholar 

  15. D’Arlas BF, Rueda L, De la Caba K, Mondragon I, Eceiza A. Microdomain composition and properties differences of biodegradable polyurethanes based on MDI and HDI. Polym Eng Sci. 2008;48:519–29.

    Article  CAS  Google Scholar 

  16. Zuber M, Zia F, Zia KM, Tabasum S, Salman M, Sultan N. Collagen based polyurethanes—a review of recent advances and perspective. Int J Biol Macromol. 2015;80:366–74.

    Article  CAS  PubMed  Google Scholar 

  17. Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioactive Materials. 2021;6:1083–106.

    Article  CAS  PubMed  Google Scholar 

  18. Alven S, Peter S, Mbese Z, Aderibig BA. Polymer-based wound dressing materials loaded with bioactive agents. potential materials for the treatment of diabetic wounds. Polymers (Basel). 2022;14:724.

  19. Shimizu R, Kishi K. Skin graft. Plast Surg Int. 2012;2012:563493.

  20. Suarato G, Bertorelli R, Athanassiou A. Borrowing from nature: biopolymers and biocomposites as smart wound care materials. Front Bioeng Biotech. 2018;6:137.

  21. Parsons D, Bowler PG, Myles V, Jones S. Silver antimicrobial dressings in wound management: A comparison of antibacterial, physical, and chemical characteristics. Wounds. 2005;17:222–32.

    Google Scholar 

  22. Mayet N, Choonara YE, Kumar P, Tomar LK, Tyagi C, Du Toit LC, et al. A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci. 2014;103:2211–30.

    Article  CAS  Google Scholar 

  23. Kalliainen LK, Gordillo GM, Schlanger R, Sen CK. Topical oxygen as an adjunct to wound healing: a clinical case series. Pathophysiology. 2003;2:81–7.

    Article  Google Scholar 

  24. Lloyd AW. Interfacial bioengineering to enhance surface biocompatibility. Med Device Technol. 2002;13:18–21.

    PubMed  Google Scholar 

  25. Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24:2339–49.

    Article  CAS  PubMed  Google Scholar 

  26. Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym. 2009;76:167–82.

    Article  CAS  Google Scholar 

  27. Kumar PTS, Abhilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R. Preparation and characterization of novel beta-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr Polym. 2010;80:761–7.

    Article  CAS  Google Scholar 

  28. Dev A, Binulal NS, Anitha A, Nair SV, Furuike T, Tamura H, et al. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr Polym. 2010;80:833–8.

    Article  CAS  Google Scholar 

  29. Yi HM, Wu LQ, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, et al. Biofabrication with chitosan. Biomacromolecules. 2005;6:2881–94.

    Article  CAS  Google Scholar 

  30. Vacanti CA. The history of tissue engineering. J Cell Mol Med. 2006;10:569–76.

    Article  PubMed  Google Scholar 

  31. Krajewska B. Membrane-based processes performed with use of chitin/chitosan materials. Sep Purif Technol. 2005;41:305–12.

    Article  CAS  Google Scholar 

  32. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26:1–21.

    Article  CAS  PubMed  Google Scholar 

  33. Tan L, Hu J, Huang H, Han J, Hu H. Study of multi-functional electrospun composite nanofibrous mats for smart wound healing. Int J Biol Macromol. 2015;79:469–76.

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Wu P, Hu X, You C, Guo R, Shi H, et al. Polyurethane membrane/knitted mesh-reinforced collagen-chitosan bilayer dermal substitute for the repair of full-thickness skin defects via a two-step procedure. J Mech Behav Biomed Mater. 2016;56:120–33.

    Article  CAS  Google Scholar 

  35. Klempaiová M, Dragúňová J, Kabát P, Hnátová M, Koller J, Bakoš D. Cytotoxicity testing of a polyurethane nanofiber membrane modified with chitosan/beta-cyclodextrin/berberine suitable for wound dressing application: evaluation of biocompatibility. Cell Tissue Bank. 2016;17:665–75.

    Article  CAS  PubMed  Google Scholar 

  36. Bankoti K, Rameshbabu AP, Datta S, Maity PP, Goswami P, Datta P, et al. Accelerated healing of full thickness dermal wounds by macroporous waterborne polyurethane-chitosan hydrogel scaffolds. Mat Sci Eng C Mater Biol Appl. 2017;81:133–43.

    Article  CAS  Google Scholar 

  37. Jafari A, Hassanajili S, Karimi MB, Emami A, Ghaffari F, Azarpira N. Effect of organic/inorganic nanoparticles on performance of polyurethane nanocomposites for potential wound dressing applications. J Mech Behav Biomed Mater. 2018;88:395–405.

    Article  CAS  Google Scholar 

  38. Uscátegui YL, Díaz LE, Gómez-Tejedor JA, Vallés-Lluch A, Vilariño-Feltrer G, Serrano MA, et al. Candidate polyurethanes based on castor oil (ricinus communis), with polycaprolactone diol and chitosan additions, for use in biomedical applications. Molecules. 2019;24:237.

    Article  PubMed Central  Google Scholar 

  39. Najafabadi SAA, Mohammadi A, Kharazi AZ. Polyurethane nanocomposite impregnated with chitosan-modified graphene oxide as a potential antibacterial wound dressing. Mat Sci Eng C Mater Biol Appl. 2020;115:110899.

    Article  CAS  Google Scholar 

  40. Yang JM, Huang YF, Dai JJ, Shi XA and Zheng YQ. A sandwich structure composite wound dressing with firmly anchored silver nanoparticles for severe burn wound healing in a porcine model. Regen Biomater. 2021;8:rbab037.

  41. Zhang M, Yang M, Woo MW, Li YC, Han WJ, Dang XG. High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. Carbohydr Polym. 2021;256: 117590.

    Article  CAS  Google Scholar 

  42. Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate-based composite materials for wound dressing application: A mini review. Carbohydr Polym. 2020;236:116025.

    Article  CAS  Google Scholar 

  43. Torres MR, Sousa AP, Silva Filho EA, Melo DF, Feitosa JP, de Paula RC, et al. Extraction and physicochemical characterization of Sargassum vulgare alginate from Brazil. Carbohydr Res. 2007;342:2067–74.

    Article  CAS  Google Scholar 

  44. Xie HX, Chen XL, Shen XR, He Y, Chen W, Luo Q, et al. Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. Int J Biol Macromol. 2018;107:93–104.

    Article  CAS  PubMed  Google Scholar 

  45. Hosseini Salekdeh SS, Daemi H, Zare-Gachi M, Rajabi S, Bazgir F, Aghdami N, et al. Assessment of the efficacy of tributylammonium alginate surface-modified polyurethane as an antibacterial elastomeric wound dressing for both noninfected and infected full-thickness wounds. ACS Appl Mater Interfaces. 2020;12:3393–406.

    Article  Google Scholar 

  46. Namuiriyachote N, Lipipun V, Akkhawattanangkul Y, Charoonrut P, Ritthidej GC. Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound. Asian J Pharm Sci. 2019;14:63–77.

    Article  Google Scholar 

  47. Namviriyachote N, Muangman P, Chinaroonchai K, Chuntrasakul C, Ritthidej GC. Polyurethane-biomacromolecule combined foam dressing containing asiaticoside: fabrication, characterization and clinical efficacy for traumatic dermal wound treatment. Int J Biol Macromol. 2020;143:510–20.

    Article  CAS  PubMed  Google Scholar 

  48. Lu WC, Chuang FS, Venkatesan M, Cho CJ, Chen PY, Tzeng YR, et al. Synthesis of water resistance and moisture-permeable nanofiber using sodium alginate-functionalized waterborne polyurethane. Polymers (Basel). 2020;12:2882.

    Article  CAS  PubMed Central  Google Scholar 

  49. Claudio-Rizo JA, Escobedo-Estrada N, Carrillo-Cortes SL, Cabrera-Munguía DA, Flores-Guía TE, Becerra-Rodriguez JJ. Highly absorbent hydrogels comprised from interpenetrated networks of alginate-polyurethane for biomedical applications. J Mater Sci Mater Med. 2021;32:70.

    Article  CAS  Google Scholar 

  50. Qu J, Zhao X, Liang Y, Xu Y, Ma PX, Guo B. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chem Eng J. 2019;362:548–60.

    Article  CAS  Google Scholar 

  51. Reyes-Ortega F, Cifuentes A, Rodríguez G, Aguilar MR, González-Gómez Á, Solis R, et al. Bioactive bilayered dressing for compromised epidermal tissue regeneration with sequential activity of complementary agents. Acta Biomater. 2015;23:103–15.

    Article  CAS  PubMed  Google Scholar 

  52. Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89:219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Movahedi M, Asefnejad A, Rafienia M, Khorasani MT. Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation. Int J Biol Macromol. 2020;146:627–37.

    Article  CAS  PubMed  Google Scholar 

  54. Eskandarinia A, Kefayat A, Gharakhloo M, Agheb M, Khodabakhshi D, Khorshidi M, et al. A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities. Int J Biol Macromol. 2020;149:467–76.

    Article  CAS  PubMed  Google Scholar 

  55. Khodabakhshi D, Eskandarinia A, Kefayat A, Rafienia M, Navid S, Karbasi S, et al. In vitro and in vivo performance of a propolis-coated polyurethane wound dressing with high porosity and antibacterial efficacy. Colloids Surf B Biointerfaces. 2019;178:177–84.

    Article  CAS  Google Scholar 

  56. Almasian A, Najafi F, Eftekhari M, Ardekani MRS, Sharifzadeh M, Khanavi M. Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies. Mat Sci Eng C Mater Biol Appl. 2020;114:111039.

    Article  CAS  Google Scholar 

  57. Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS. Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydr Polym. 2014;102:884–92.

    Article  CAS  Google Scholar 

  58. Ko SW, Lee JY, Lee J, Son BC, Jang SR, Aguilar LE, et al. Analysis of drug release behavior utilizing the swelling characteristics of cellulosic nanofibers. Polymers (Basel). 2019;11:1376.

    Article  CAS  PubMed Central  Google Scholar 

  59. Szczepańczyk P, Szlachta M, Zlocista-Szewczyk N, Chlopek J, Pielichowska K. Recent developments in polyurethane-based materials for bone tissue engineering. Polymers (Basel). 2021;13:946.

  60. Laurencin CT, Nair LS. Nanotechnology and tissue engineering: the scaffold. Boca Raton: CRC Press; 2008.

    Book  Google Scholar 

  61. Moradi L, Vasei M, Dehghan MM, Majidi M, Farzad Mohajeri S, Bonakdar S. Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: In vivo study. Biomaterials. 2017;126:18–30.

    Article  CAS  PubMed  Google Scholar 

  62. Yu QA, Song YN, Shi XM, Xu CY, Bin YZ. Preparation and properties of chitosan derivative/poly(vinyl alcohol) blend film crosslinked with glutaraldehyde. Carbohydr Polym. 2011;84:465–70.

    Article  CAS  Google Scholar 

  63. Muzzarelli RA, Greco F, Busilacchi A, Sollazzo V, Gigante A. Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. Carbohydr Polym. 2012;89:723–39.

    Article  CAS  Google Scholar 

  64. Rongen JJ, van Tienen TG, van Bochove B, Grijpma DW, Buma P. Biomaterials in search of a meniscus substitute. Biomaterials. 2014;35:3527–40.

    Article  CAS  PubMed  Google Scholar 

  65. Topsakal A, Uzun M, Ugar G, Ozcan A, Altun E, Oktar FN, et al. Development of amoxicillin-loaded electrospun polyurethane/chitosan/ beta-tricalcium phosphate scaffold for bone tissue regeneration. IEEE Trans Nanobioscience. 2018;17:321–8.

    Article  Google Scholar 

  66. Zo S, Choi S, Kim H, Shin E, Han S. Synthesis and characterization of carboxymethyl chitosan scaffolds grafted with waterborne polyurethane. J Nanosci Nanotechnol. 2020;20:5014–8.

    Article  PubMed  Google Scholar 

  67. Zo SM, Choi SM, Han SS. Use of water-borne polyurethane as a crosslinker on gelatin three-dimensional constructs. Chem Sci J. 2018;9:81.

  68. Shaabani A, Sedghi R. Preparation of chitosan biguanidine/PANI-containing self-healing semi-conductive waterborne scaffolds for bone tissue engineering. Carbohydr Polym. 2021;264: 118045.

    Article  CAS  PubMed  Google Scholar 

  69. Shalumon KT, Anulekha KH, Girish CM, Prasanth R, Nair SV, Jayakumar R. Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr Polym. 2010;80:413–9.

    Article  CAS  Google Scholar 

  70. Shrestha S, Shrestha BK, Ko SW, Kandel R, Park CH, Kim CS. Engineered cellular microenvironments from functionalized multiwalled carbon nanotubes integrating Zein/Chitosan @Polyurethane for bone cell regeneration. Carbohydr Polym. 2021;251:117035.

  71. Zhang Y, Li WY, Lan R, Wang JY. Quality monitoring of porous Zein scaffolds: a novel biomaterial. Engineering (Beijing). 2017;3:130–5.

    CAS  Google Scholar 

  72. Hirata E, Uo M, Takita H, Akasaka T, Watari F, Yokoyama A. Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering. Carbon. 2011;49:3284–91.

    Article  CAS  Google Scholar 

  73. Fan WS, Yuan L, Li JH, Wang Z, Chen JF, Gun CG, et al. Injectable double-crosslinked hydrogels with kartogenin-conjugated polyurethane nano-particles and transforming growth factor beta 3 for in-situ cartilage regeneration. Mat Sci Eng C Mater Biol Appl. 2020;110:110705.

    Article  CAS  Google Scholar 

  74. Johnson KA. A stem cell-based approach to cartilage repair. Osteoarthritis Cartilage. 2013;21:S4.

    Article  Google Scholar 

  75. Deng M, Mei T, Hou T, Luo K, Luo F, Yang A, Yu B, et al. TGF beta 3 recruits endogenous mesenchymal stem cells to initiate bone regeneration. Stem Cell Res Ther. 2017;8:258.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rahmani-Moghadam E, Talaei-Khozani T, Zarrin V, Vojdani Z. Thymoquinone loading into hydroxyapatite/alginate scaffolds accelerated the osteogenic differentiation of the mesenchymal stem cells. Biomed Eng Online. 2021;20:76.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Thummuri D, Jeengar MK, Shrivastava S, Nemani H, Ramavat RN, Chaudhari P, et al. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling. Pharmacol Res. 2015;99:63–73.

    Article  CAS  PubMed  Google Scholar 

  78. Hung KC, Tseng CS, Dai LG, Hsu SH. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials. 2016;83:156–68.

    Article  CAS  PubMed  Google Scholar 

  79. Matsiko A, Levingstone TJ, O’Brien FJ. Advanced strategies for articular cartilage defect repair. Materials (Basel). 2013;6:637–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chou HC, Huang LT, Yeh TF, Chen CM. Rho-kinase inhibitor Y-27632 attenuates pulmonary hypertension in hyperoxia-exposed newborn rats. Acta Pharmacol Sin. 2013;34:1310–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shie MY, Chang WC, Wei LJ, Huang YH, Chen CH, Shih CT, et al. 3D Printing of cytocompatible water-based light-cured polyurethane with hyaluronic acid for cartilage tissue engineering applications. Materials (Basel). 2017;10:136.

    Article  PubMed Central  Google Scholar 

  82. Monaco G, El Haj AJ, Alini M, Stoddart MJ. Sodium hyaluronate supplemented culture media as a new hMSC chondrogenic differentiation media-model for in vitro/ex vivo screening of potential cartilage repair therapies. Front Bioeng Biotechnol. 2020;8:243.

  83. Abpeikar Z, Javdani M, Mirzaei SA, Alizadeh A, Moradi L, Soleimannejad M, et al. Macroporous scaffold surface modified with biological macromolecules and piroxicam-loaded gelatin nanofibers toward meniscus cartilage repair. Int J Biol Macromol. 2021;183:1327–45.

    Article  CAS  PubMed  Google Scholar 

  84. Asadpour S, Yeganeh H, Ai J, Ghanbari H. A novel polyurethane modified with biomacromolecules for small-diameter vascular graft applications. J Mater Sci. 2018;53:9913–27.

    Article  CAS  Google Scholar 

  85. Swanepoel E, Liebenberg W, de Villiers MM, Dekker TG. Dissolution properties of piroxicam powders and capsules as a function of particle size and the agglomeration of powders. Drug Dev Ind Pharm. 2000;26:1067–76.

    Article  CAS  PubMed  Google Scholar 

  86. Liu HH, Zhang L, Shi PJ, Zou Q, Zuo Y, Li YB. Hydroxyapatite/polyurethane scaffold incorporated with drug-loaded ethyl cellulose microspheres for bone regeneration. J Biomed Mater Res B Appl Biomater. 2010;95:36–46.

  87. Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials. 2006;27:2450–67.

    Article  CAS  PubMed  Google Scholar 

  88. Cochis A, Grad S, Stoddart MJ, Farè S, Altomare L, Azzimonti B, et al. Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Sci Rep. 2017;7:45018.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R111A1A01053275).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong-Su Cho or Hyun-Joong Kim.

Ethics declarations

Conflict of interest

The authors have no financial conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, DB., Lee, JC., Hwang, SK. et al. Progress of Polysaccharide-Contained Polyurethanes for Biomedical Applications. Tissue Eng Regen Med 19, 891–912 (2022). https://doi.org/10.1007/s13770-022-00464-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-022-00464-2

Keywords

Navigation