Skip to main content

Natural Polysaccharides on Wound Healing

  • Reference work entry
  • First Online:
Polysaccharides of Microbial Origin

Abstract

As a result of diseases and accidents, people lose their tissues and organs. Instead of difficult and troublesome methods such as tissue and organ transplantation, biocompatible, nontoxic, antitumor, antimicrobial, and wound healing natural polymers are used for the treatment of these damages. There are glycosaminoglycans as natural polysaccharides in the human body, which act as extracellular matrix and produced from fibroblasts. Wound healing is a dynamic and complex process consisting of successive periods. Tissue healing process is regular and timely in acute wounds. In chronic wounds, healing takes longer time. The use of appropriate dressings plays an important role in the wound healing process. Researches on polymeric dressings used as carriers for local application of active ingredients to the wound surface are increasing. These polymeric systems can be natural, hydrogel-forming materials such as collagen, chitosan, and pectin, or tissue-engineered materials such as alginate. In this section, extracellular matrix, wound formation, wound healing mechanisms, and the function of natural polysaccharides which have an important role in wound healing will be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arora PD, Narani N, McCulloch CA. The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol. 1999;154(3):871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum CL, Arpey CJ. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg. 2005;31(6):674–86. discussion 686

    Article  CAS  PubMed  Google Scholar 

  • Beer HD, Longaker MT, Werner S. Reduced expression of PDGF and PDGF receptors during impaired wound healing. J Invest Dermatol. 1997;109(2):132–8.

    Article  CAS  PubMed  Google Scholar 

  • Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994;264(5158):569–71.

    Article  CAS  PubMed  Google Scholar 

  • Broughton G 2nd, Janis JE, Attinger CE. The basic science of wound healing. Plast Reconstr Surg. 2006;117(7 Suppl):12S–34S.

    Article  CAS  PubMed  Google Scholar 

  • Butler LM, Rainger GE, Nash GB. A role for the endothelial glycosaminoglycan hyaluronan in neutrophil recruitment by endothelial cells cultured for prolonged periods. Exp Cell Res. 2009;315(19):3433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celebi A, Onat T. Echocardiographic study on the origin of the innocent flow murmurs. Pediatr Cardiol. 2006;27(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  • Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87(6):2095–147.

    Article  CAS  PubMed  Google Scholar 

  • Gosain A, DiPietro LA. Aging and wound healing. World J Surg. 2004;28(3):321–6.

    Article  PubMed  Google Scholar 

  • Grazul-Bilska AT, et al. Wound healing: the role of growth factors. Drugs Today (Barc). 2003;39(10):787–800.

    Article  CAS  Google Scholar 

  • Ishihara M, et al. Controlled releases of FGF-2 and paclitaxel from chitosan hydrogels and their subsequent effects on wound repair, angiogenesis, and tumor growth. Curr Drug Deliv. 2006;3(4):351–8.

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto M, et al. Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Lett. 2005;579(20):4423–9.

    Article  CAS  PubMed  Google Scholar 

  • Jackson RL, Busch SJ, Cardin AD. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev. 1991;71(2):481–539.

    Article  CAS  PubMed  Google Scholar 

  • Jacob M, et al. The endothelial glycocalyx affords compatibility of Starling's principle and high cardiac interstitial albumin levels. Cardiovasc Res. 2007;73(3):575–86.

    Article  CAS  PubMed  Google Scholar 

  • Karabekian Z, et al. Effects of N-cadherin overexpression on the adhesion properties of embryonic stem cells. Cell Adhes Migr. 2009;3(3):305–10.

    Article  Google Scholar 

  • Kim MS, et al. Water-soluble chitosan inhibits the production of pro-inflammatory cytokine in human astrocytoma cells activated by amyloid beta peptide and interleukin-1beta. Neurosci Lett. 2002;321(1–2):105–9.

    Article  CAS  PubMed  Google Scholar 

  • Ko CH, et al. Healing effect of a two-herb recipe (NF3) on foot ulcers in Chinese patients with diabetes: a randomized double-blind placebo-controlled study. J Diabetes. 2014;6(4):323–34.

    Article  PubMed  Google Scholar 

  • Kobayashi T, Yamasaki Y, Watanabe T. Diabetic scleredema: a case report and biochemical analysis for glycosaminoglycans. J Dermatol. 1997;24(2):100–3.

    Article  CAS  PubMed  Google Scholar 

  • Komarcevic A. The modern approach to wound treatment. Med Pregl. 2000;53(7–8):363–8.

    CAS  PubMed  Google Scholar 

  • Kumar AS, et al. Right thoracotomy revisited. Tex Heart Inst J. 1993;20(1):40–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lesko E, Majka M. The biological role of HGF-MET axis in tumor growth and development of metastasis. Front Biosci. 2008;13:1271–80.

    Article  CAS  PubMed  Google Scholar 

  • Mantle D, Gok MA, Lennard TW. Adverse and beneficial effects of plant extracts on skin and skin disorders. Adverse Drug React Toxicol Rev. 2001;20(2):89–103.

    CAS  PubMed  Google Scholar 

  • Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol. 2004;36(6):1031–7.

    Article  CAS  PubMed  Google Scholar 

  • Miller SJ, et al. Re-epithelialization of porcine skin by the sweat apparatus. J Invest Dermatol. 1998;110(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  • Miller RS, et al. The clinical effects of hyaluronic acid ester nasal dressing (Merogel) on intranasal wound healing after functional endoscopic sinus surgery. Otolaryngol Head Neck Surg. 2003;128(6):862–9.

    PubMed  Google Scholar 

  • Mitchell JW, Church FC. Aspartic acid residues 72 and 75 and tyrosine-sulfate 73 of heparin cofactor II promote intramolecular interactions during glycosaminoglycan binding and thrombin inhibition. J Biol Chem. 2002;277(22):19823–30.

    Article  CAS  PubMed  Google Scholar 

  • Monaco JL, Lawrence WT. Acute wound healing an overview. Clin Plast Surg. 2003;30(1):1–12.

    Article  PubMed  Google Scholar 

  • Muncaster D. The physiology of wound healing and wound assessment. Br J Perioper Nurs. 2001;11(8):362–70.

    CAS  PubMed  Google Scholar 

  • Negut I, Grumezescu V, Grumezescu AM. Treatment strategies for infected wounds. Molecules. 2018;23(9):2392.

    Article  PubMed Central  Google Scholar 

  • Ono I, et al. Studies on cytokines related to wound healing in donor site wound fluid. J Dermatol Sci. 1995;10(3):241–5.

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, et al. The extracellular matrix of the lung and its role in edema formation. An Acad Bras Cienc. 2007;79(2):285–97.

    Article  CAS  PubMed  Google Scholar 

  • Peplow PV. Glycosaminoglycan: a candidate to stimulate the repair of chronic wounds. Thromb Haemost. 2005;94(1):4–16.

    CAS  PubMed  Google Scholar 

  • Presti D, Scott JE. Hyaluronan-mediated protective effect against cell damage caused by enzymatically produced hydroxyl (OH.) radicals is dependent on hyaluronan molecular mass. Cell Biochem Funct. 1994;12(4):281–8.

    Article  CAS  PubMed  Google Scholar 

  • Ramael M, et al. Immunohistochemical distribution patterns of epidermal growth factor receptor in malignant mesothelioma and non-neoplastic mesothelium. Virchows Arch A Pathol Anat Histopathol. 1991;419(3):171–5.

    Article  CAS  PubMed  Google Scholar 

  • Robson MC, Steed DL, Franz MG. Wound healing: biologic features and approaches to maximize healing trajectories. Curr Probl Surg. 2001;38(2):72–140.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber J, et al. Adenoviral gene transfer of an NF-kappaB super-repressor increases collagen deposition in rodent cutaneous wound healing. Surgery. 2005;138(5):940–6.

    Article  PubMed  Google Scholar 

  • Sidhu GS, et al. Enhancement of wound healing by curcumin in animals. Wound Repair Regen. 1998;6(2):167–77.

    Article  CAS  PubMed  Google Scholar 

  • Souza-Fernandes AB, Pelosi P, Rocco PR. Bench-to-bedside review: the role of glycosaminoglycans in respiratory disease. Crit Care. 2006;10(6):237.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan W, Krishnaraj R, Desai TA. Evaluation of nanostructured composite collagen--chitosan matrices for tissue engineering. Tissue Eng. 2001;7(2):203–10.

    Article  CAS  PubMed  Google Scholar 

  • Ueno H, Mori T, Fujinaga T. Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev. 2001;52(2):105–15.

    Article  CAS  PubMed  Google Scholar 

  • Ustunel I, et al. Immunohistochemical distribution patterns of collagen type II, chondroitin 4-sulfate, laminin and fibronectin in human nasal septal cartilage. Acta Histochem. 2003;105(2):109–14.

    Article  CAS  PubMed  Google Scholar 

  • van Beurden HE, et al. Myofibroblasts in palatal wound healing: prospects for the reduction of wound contraction after cleft palate repair. J Dent Res. 2005;84(10):871–80.

    Article  PubMed  Google Scholar 

  • Wagener J, et al. Candida albicans chitin increases Arginase-1 activity in human macrophages, with an impact on macrophage antimicrobial functions. MBio. 2017;8(1):e01820–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker S, et al. Chemistry and biology of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. Chem Rev. 2005;105(2):449–76.

    Article  CAS  PubMed  Google Scholar 

  • Winter GD, Scales JT. Effect of air drying and dressings on the surface of a wound. Nature. 1963;197:91–2.

    Article  CAS  PubMed  Google Scholar 

  • Woo YC, et al. Changes in tissue pH and temperature after incision indicate acidosis may contribute to postoperative pain. Anesthesiology. 2004;101(2):468–75.

    Article  PubMed  Google Scholar 

  • Wound repair. The remarkable healing power of the human body. Mayo Clin Womens Healthsource. 2005;9(12):4–5.

    Google Scholar 

  • Yang F, et al. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26(15):2603–10.

    Article  CAS  PubMed  Google Scholar 

  • Zhong SP, Zhang YZ, Lim CT. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(5):510–25.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, et al. Transforming growth factor beta induces sensory neuronal hyperexcitability, and contributes to pancreatic pain and hyperalgesia in rats with chronic pancreatitis. Mol Pain. 2012;8:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Maçin, S. (2022). Natural Polysaccharides on Wound Healing. In: Oliveira, J.M., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-42215-8_57

Download citation

Publish with us

Policies and ethics