Novel Marine Organism-Derived Extracellular Vesicles for Control of Anti-Inflammation

Abstract

Background:

Extracellular vesicles (EVs) exhibit potential as functional biomolecules for tissue regeneration and immunomodulation as they play important roles in the physiological communication between cells. EV internal cargo contains miRNAs, proteins, lipids, and so on. Osteoarthritis (OA) is a common joint disease causing disability owing to impaired joint function and pain. EVs originating from animal cells and tissue matrices are also being considered for OA, in addition to research involving non-steroidal therapeutic agents. However, there are no studies on EVs from marine organisms. Hence, we focused on sea cucumber-derived EVs and conducted experiments to set up an extraction protocol and to demonstrate their efficacy to modulate the inflammatory environment.

Methods:

Sea cucumber extracellular matrices (SECMs) were prepared by a decellularization process. Lyophilized SECMs were treated with collagenase and filtered to isolate sea cucumber extracellular vesicles (SEVs). After isolation, we conducted physical characterization and cell activation studies including cytotoxicity, proliferation, and anti-inflammation effect assays.

Results:

The physical characterization results showed circular SEVs in the size range of 66–480 nm. These SEVs contained large amounts of protein cargo, infiltrated the synoviocyte membrane without damage, and had a suppressive effect on inflammatory cytokines.

Conclusion:

This study established an extraction process for EVs from sea cucumber and reported the anti-inflammatory ability of SEVs. Isolated SEVs can be further utilized for tissue regeneration studies and can be compared to various marine or animal-derived EVs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Ahmed AU. An overview of inflammation: mechanism and consequences. Front Biol. 2011;6:274.

    CAS  Article  Google Scholar 

  2. 2.

    Chen Y, Jiang W, Yong H, He M, Yang Y, Deng Z, et al. Macrophages in osteoarthritis: pathophysiology and therapeutics. Am J Transl Res. 2020;12:261–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014;2014:561459.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. 4.

    Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7:33–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Miller RE, Miller RJ, Malfait AM. Osteoarthritis joint pain: the cytokine connection. Cytokine. 2014;70:185–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noël D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep. 2017;7:16214.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    Toh WS, Lai RC, Hui JHP, Lim SK. MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment. Semin Cell Dev Biol. 2017;67:56–64.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials. 2018;156:16–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther. 2017;8:189.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Liu Y, Zou R, Wang Z, Wen C, Zhang F, Lin F. Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochem J. 2018;475:3629–38.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Edgar JR. Q&A: What are exosomes, exactly? BMC Biol. 2016;14:46.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. 12.

    De Broe ME, Wieme RJ, Logghe GN, Roels F. Spontaneous shedding of plasma membrane fragments by human cells in vivo and in vitro. Clin Chim Acta. 1977;81:237–45.

    PubMed  Article  Google Scholar 

  13. 13.

    Buzas EI, György B, Nagy G, Falus A, Gay S. Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol. 2014;10:356–64.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Takahashi A, Okada R, Nagao K, Kawamata Y, Hanyu A, Yoshimoto S, et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun. 2017;8:15287.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Cho BS, Kim JO, Ha DH, Yi YW. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther. 2018;9:187.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Lim W, Kim HS. Exosomes as therapeutic vehicles for cancer. Tissue Eng Regen Med. 2019;16:213–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Sahoo S, Losordo DW. Exosomes and cardiac repair after myocardial infarction. Circ Res. 2014;114:333–44.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Chen J, Chopp M. Exosome therapy for stroke. Stroke. 2018;49:1083–90.

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Zhang ZG, Chopp M. Exosomes in stroke pathogenesis and therapy. J Clin Invest. 2016;126:1190–7.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35:851–8.

    CAS  Article  Google Scholar 

  21. 21.

    Hussey GS, Keane TJ, Badylak SF. The extracellular matrix of the gastrointestinal tract: a regenerative medicine platform. Nat Rev Gastroenterol Hepatol. 2017;14:540–52.

    PubMed  Article  Google Scholar 

  22. 22.

    Kim S, Kim BS. Control of adult stem cell behavior with biomaterials. Tissue Eng Regen Med. 2014;11:423–30.

    CAS  Article  Google Scholar 

  23. 23.

    Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83.

    CAS  PubMed  Google Scholar 

  25. 25.

    Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol. 2004;12:367–77.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Park DY, Yun HW, Lim S, Truong MD, Yin XY, Park J, et al. Cross-linked cartilage acellular matrix film decreases postsurgical peritendinous adhesions. Artif Organs. 2020;44:E136–49.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Huleihel L, Bartolacci JG, Dziki JL, Vorobyov T, Arnold B, Scarritt ME, et al. Matrix-bound nanovesicles recapitulate extracellular matrix effects on macrophage phenotype. Tissue Eng Part A. 2017;23:1283–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Huleihel L, Hussey GS, Naranjo JD, Zhang L, Dziki JL, Turner NJ, et al. Matrix-bound nanovesicles within ECM bioscaffolds. Sci Adv. 2016;2:e1600502.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    van der Merwe Y, Faust AE, Sakalli ET, Westrick CC, Hussey G, Chan KC, et al. Matrix-bound nanovesicles prevent ischemia-induced retinal ganglion cell axon degeneration and death and preserve visual function. Sci Rep. 2019;9:1–15.

    Article  CAS  Google Scholar 

  30. 30.

    An M, Kwon K, Park J, Ryu DR, Shin JA, Lee Kang J, et al. Extracellular matrix-derived extracellular vesicles promote cardiomyocyte growth and electrical activity in engineered cardiac atria. Biomaterials. 2017;146:49–59.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Park SY, Lim HK, Lee S, Hwang HC, Cho SK, Cho M. Pepsin-solubilised collagen (PSC) from Red Sea cucumber (Stichopus japonicus) regulates cell cycle and the fibronectin synthesis in HaCaT cell migration. Food Chem. 2012;132:487–92.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Silva TH, Moreira-Silva J, Marques AL, Domingues A, Bayon Y, Reis RL. Marine origin collagens and its potential applications. Mar Drugs. 2014;12:5881–901.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Binnewerg B, Schubert M, Voronkina A, Muzychka L, Wysokowski M, Petrenko I, et al. Marine biomaterials: biomimetic and pharmacological potential of cultivated Aplysina aerophoba marine demosponge. Mater Sci Eng C Mater Biol Appl. 2020;109:110566.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Kim SK, Ngo DH, Vo TS, Ryu B. Industry perspectives of marine-derived proteins as biomaterials. In: Kim SK, editor. Marine biomaterials: characterization, isolation and applications. Boca Raton, FL, USA: CRC Press; 2013.

    Google Scholar 

  35. 35.

    Ohta N, Sato M, Ushida K, Kokubo M, Baba T, Taniguchi K, et al. Jellyfish mucin may have potential disease-modifying effects on osteoarthritis. BMC Biotechnol. 2009;9:98.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Gomes AR, Freitas AC, Duarte AC, Rocha-Santos TA. Echinoderms: a review of bioactive compounds with potential health effects. Amsterdam: Elsevier; 2016. p. 1–54.

    Google Scholar 

  37. 37.

    Carnevali MC. Regeneration in echinoderms: repair, regrowth, cloning. Invertebrate Surviv J. 2006;3:64–76.

    Google Scholar 

  38. 38.

    San Miguel-Ruiz JE, García-Arrarás JE. Common cellular events occur during wound healing and organ regeneration in the sea cucumber Holothuria glaberrima. BMC Dev Biol. 2007;7:115.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Sun L, Chen M, Yang H, Wang T, Liu B, Shu C, et al. Large scale gene expression profiling during intestine and body wall regeneration in the sea cucumber Apostichopus japonicus. Comp Biochem Physiol Part D Genomics Proteomics. 2011;6:195–205.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  40. 40.

    García-Arrarás JE, Dolmatov IY. Echinoderms: potential model systems for studies on muscle regeneration. Curr Pharm Des. 2010;16:942–55.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Smith GN Jr. Regeneration in the sea cucumber Leptosynapta. II. The regenerative capacity. J Exp Zool. 1971;177:331–42.

    PubMed  Article  Google Scholar 

  42. 42.

    Siahaan EA, Pangestuti R, Munandar H, Kim SK. Cosmeceuticals properties of sea cucumbers: prospects and trends. Cosmetics. 2017;4:26.

    Article  CAS  Google Scholar 

  43. 43.

    Kijjoa A, Sawangwong P. Drugs and cosmetics from the sea. Mar Drugs. 2004;2:73–82.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  44. 44.

    Li X, Roginsky AB, Ding XZ, Woodward C, Collin P, Newman RA, et al. Review of the apoptosis pathways in pancreatic cancer and the anti-apoptotic effects of the novel sea cucumber compound, frondoside a. Ann N Y Acad Sci. 2008;1138:181–98.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Oh GW, Ko SC, Lee DH, Heo SJ, Jung WK. Biological activities and biomedical potential of sea cucumber (Stichopus japonicus): a review. J Fish Aquat Sci. 2017;20:28.

    Article  CAS  Google Scholar 

  46. 46.

    Janakiram NB, Mohammed A, Rao CV. Sea cucumbers metabolites as potent anti-cancer agents. Mar Drugs. 2015;13:2909–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Kim JL, Park SH, Jeong S, Kim BR, Na YJ, Jo MJ, et al. Sea cucumber (Stichopus japonicas) F2 enhanced TRAIL-induced apoptosis via XIAP ubiquitination and ER stress in colorectal cancer cells. Nutrients. 2019;11:1061.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  48. 48.

    Himaya SW, Ryu B, Qian ZJ, Kim SK. Sea cucumber, Stichopus japonicus ethyl acetate fraction modulates the lipopolysaccharide induced iNOS and COX-2 via MAPK signaling pathway in murine macrophages. Environ Toxicol Pharmacol. 2010;30:68–75.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. Bacterial vesicles in marine ecosystems. Science. 2014;343:183–6.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Soler N, Krupovic M, Marguet E, Forterre P. Membrane vesicles in natural environments: a major challenge in viral ecology. ISME J. 2015;9:793–6.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Toyofuku M, Morinaga K, Hashimoto Y, Uhl J, Shimamura H, Inaba H, et al. Membrane vesicle-mediated bacterial communication. ISME J. 2017;11:1504–9.

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease. N Engl J Med. 2018;379:958–66.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Cook AD, Christensen AD, Tewari D, McMahon SB, Hamilton JA. Immune cytokines and their receptors in inflammatory pain. Trends Immunol. 2018;39:240–55.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Zhang P, Li C, Zhang R, Zhang W, Jin C, Wang L, et al. The roles of two miRNAs in regulating the immune response of sea cucumber. Genetics. 2015;201:1397–410.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Zhan Y, Liu L, Zhao T, Sun J, Cui D, Li Y, et al. MicroRNAs involved in innate immunity regulation in the sea cucumber: a review. Fish Shellfish Immunol. 2019;95:297–304.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Research Foundation Grant (NRF- 2019M3E5D1A02070861.)

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sang-Hyug Park.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jo, SH., Kim, C. & Park, SH. Novel Marine Organism-Derived Extracellular Vesicles for Control of Anti-Inflammation. Tissue Eng Regen Med (2021). https://doi.org/10.1007/s13770-020-00319-8

Download citation

Keywords

  • Extracellular matrix
  • Extracellular vesicles
  • Sea cucumber
  • Marine organism
  • Anti-inflammation