Skip to main content
Log in

Biomaterials Regulate Mechanosensors YAP/TAZ in Stem Cell Growth and Differentiation

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Tissue-resident stem cells are surrounded by a microenvironment known as ‘stem cell niche’ which is specific for each stem cell type. This niche comprises of cell-intrinsic and -extrinsic factors like biochemical and biophysical signals, which regulate stem cell characteristics and differentiation. Biochemical signals have been thoroughly studied however, the effect of biophysical signals on stem cell regulation is yet to be completely understood. Biomaterials have aided in addressing this issue since they can provide a defined and tuneable microenvironment resembling in vivo conditions. We review various biomaterials used in many studies which have shown a connection between biomaterial-generated mechanical signals and alteration in stem cell behaviour. Researchers probed to understand the mechanism of mechanotransduction and reported that the signals from the extracellular matrix regulate a transcription factor yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ), which is a downstream-regulator of the Hippo pathway and it transduces the mechanical signals inside the nucleus. We highlight the role of the YAP/TAZ as mechanotransducers in stem cell self-renewal and differentiation in response to substrate stiffness, also the possibility of mechanobiology as the emerging field of regenerative medicines and three-dimensional tissue printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ranga A, Gjorevski N, Lutolf M. Drug discovery through stem cell-based organoid models. Adv Drug Deliv Rev. 2014;69:19–28.

    PubMed  Google Scholar 

  2. Clevers H. Modeling development and disease with organoids. Cell. 2016;165:1586–97.

    CAS  PubMed  Google Scholar 

  3. Barkholt L, Flory E, Jekerle V, Lucas-Samuel S, Ahnert P, Bisset L, et al. Risk of tumorigenicity in mesenchymal stromal cell-based therapies bridging scientific observations and regulatory viewpoints. Cytotherapy. 2013;15:753–9.

    PubMed  Google Scholar 

  4. Steinbeck JA, Studer L. Moving stem cells to the clinic: potential and limitations for brain repair. Neuron. 2015;86:187–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Caglayan S, Ahrens TD, Cieślar-Pobuda A, Staerk J. Modern ways of obtaining stem cells. In: Łos MJ, Hudecki A, Wiecheć E, editors. Stem cells and biomaterials for regenerative medicine. Cambridge: Academic Press; 2019. p. 17–36.

    Google Scholar 

  6. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    CAS  PubMed  Google Scholar 

  7. Yamanaka S. Patient-specific pluripotent stem cells become even more accessible. Cell Stem Cell. 2010;7:1–2.

    CAS  PubMed  Google Scholar 

  8. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004;10:55.

    CAS  PubMed  Google Scholar 

  9. Zhang J, Li L. BMP signaling and stem cell regulation. Dev Biol. 2005;284:1–11.

    CAS  PubMed  Google Scholar 

  10. Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci. 2005;118:4495–509.

    CAS  PubMed  Google Scholar 

  11. Kaverina I, Krylyshkina O, Beningo K, Anderson K, Wang YL, Small JV. Tensile stress stimulates microtubule outgrowth in living cells. J Cell Sci. 2002;115:2283–91.

    CAS  PubMed  Google Scholar 

  12. Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol. 2017;18:728–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Eyckmans J, Boudou T, Yu X, Chen CS. A hitchhiker’s guide to mechanobiology. Dev Cell. 2011;21:35–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pelham RJ, Wang YL. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A. 1997;94:13661–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Huch M, Knoblich JA, Lutolf M, Martinez-Arias A. The hope and the hype of organoid research. Development. 2017;144:938–41.

    CAS  PubMed  Google Scholar 

  16. Sato T, Vries RG, Snippert HJ, Van De Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature. 2009;459:262–5.

    CAS  PubMed  Google Scholar 

  17. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472:51–6.

    CAS  PubMed  Google Scholar 

  18. Antonica F, Kasprzyk DF, Opitz R, Iacovino M, Liao XH, Dumitrescu AM, et al. Generation of functional thyroid from embryonic stem cells. Nature. 2012;491:66–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.

    CAS  PubMed  Google Scholar 

  20. Koehler KR, Mikosz AM, Molosh AI, Patel D, Hashino E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature. 2013;500:217–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D, et al. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol. 2013;15:1507–15.

    CAS  PubMed  Google Scholar 

  22. Huch M, Dorrell C, Boj SF, Van Es JH, Li VS, Van De Wetering M, et al. In vitro expansion of single Lgr5 + liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494:247–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang SX, Islam MN, O’Neill J, Hu Z, Yang YG, Chen YW, et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol. 2014;32:84–91.

    CAS  PubMed  Google Scholar 

  24. Múnera JO, Wells JM. Generation of gastrointestinal organoids from human pluripotent stem cells. Organ Regen. 2017;1597:167–77.

    Google Scholar 

  25. Wimmer RA, Leopoldi A, Aichinger M, Kerjaschki D, Penninger JM. Generation of blood vessel organoids from human pluripotent stem cells. Nat Prot. 2019;14:3082–100.

    CAS  Google Scholar 

  26. Yue B. Biology of the extracellular matrix: an overview. J Glaucoma. 2014;23 Suppl 1:S20–3.

    Google Scholar 

  27. Cancedda R. Cartilage and bone extracellular matrix. Curr Pharma Design. 2009;15:1334–48.

    Google Scholar 

  28. Ruoslahti E. Brain extracellular matrix. Glycobiology. 1996;6:489–92.

    CAS  PubMed  Google Scholar 

  29. Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47:1394–400.

    CAS  PubMed  Google Scholar 

  30. Budday S, Nay R, de Rooij R, Steinmann P, Wyrobek T, Ovaert TC, et al. Mechanical properties of gray and white matter brain tissue by indentation. J Mech Behav Biomed. 2015;46:318–30.

    Google Scholar 

  31. Lo CM, Wang HB, Dembo M, Wang YL. Cell movement is guided by the rigidity of the substrate. Biophy J. 2000;79:144–52.

    CAS  Google Scholar 

  32. Toh WS, Lim TC, Kurisawa M, Spector M. Modulation of mesenchymal stem cell chondrogenesis in a tuneable hyaluronic acid hydrogel microenvironment. Biomaterials. 2012;33:3835–45.

    CAS  PubMed  Google Scholar 

  33. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    CAS  PubMed  Google Scholar 

  34. García A, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res. 2005;84:407–13.

    PubMed  Google Scholar 

  35. Flanagan LA, Ju YE, Marg B, Osterfield M, Janmey PA. Neurite branching on deformable substrates. Neuroreport. 2002;13:2411-5.

    PubMed  PubMed Central  Google Scholar 

  36. Deroanne CF, Lapiere CM, Nusgens BV. In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc Res. 2001;49:647–58.

    CAS  PubMed  Google Scholar 

  37. Engler AJ, Richert L, Wong JY, Picart C, Discher DE. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion. Surface Sci. 2004;570:142–54.

    CAS  Google Scholar 

  38. Gilbert M, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science. 2010;329:1078–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kolahi KS, Donjacour A, Liu X, Lin W, Simbulan RK, Bloise E, et al. Effect of substrate stiffness on early mouse embryo development. PLoS One. 2012;7:e41717.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chevallay B, Herbage D. Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med Biol Eng Comput. 2000;38:211–8.

    CAS  PubMed  Google Scholar 

  41. Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B. Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibres. J Cell Biol. 2006;172:259–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Muduli S, Chen LH, Li M, Heish ZW, Liu CH, Kumar S, et al. Stem cell culture on polyvinyl alcohol hydrogels having different elasticity and immobilized with ECM-derived oligopeptides. J Polym Eng. 2017;37:647–60.

    CAS  Google Scholar 

  43. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5:17–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Théry M. Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci. 2010;123:4201–13.

    PubMed  Google Scholar 

  45. Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol. 2012;13:591–600.

    CAS  PubMed  Google Scholar 

  46. Maldonado M, Wong LY, Echeverria C, Ico G, Low K, Fujimoto T, et al. The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells. Biomaterials. 2015;50:10–9.

    CAS  PubMed  Google Scholar 

  47. Abbas Y, Carnicer-Lombarte A, Gardner L, Thomas J, Brosens JJ, Moffett A, et al. Tissue stiffness at the human maternal–fetal interface. Hum Reprod. 2019;34:1999–2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via αVβ5 integrin. Stem Cells. 2008;26:2257–65.

    CAS  PubMed  Google Scholar 

  49. Musah S, Morin SA, Wrighton J, Zwick DB, Jin S, Kiessling LL. Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano. 2012;6:10168–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Musah S, Wrighton J, Zaltsman Y, Zhong X, Zorn S, Parlato MB, et al. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proc Natl Acad Sci U S A. 2014;111:13805–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen YF, Li Y, Chou CH, Chiew MY, Huang HD, Ho JHC, et al. Control of matrix stiffness promotes endodermal lineage specification by regulating SMAD2/3 via lncRNA LINC00458. Sci Adv. 2020;6:eaay0264.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chuah YJ, Koh YT, Lim K, Menon NV, Wu Y, Kang Y. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Sci Rep. 2015;5:18162.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Evans ND, Minelli C, Gentleman E, LaPointe V, Patankar SN, Kallivretaki M, et al. Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cells Mater. 2009;18:1–13.

    CAS  Google Scholar 

  54. Palchesko RN, Zhang L, Sun Y, Feinberg AW. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One. 2012;7:e51499.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yeh YC, Corbin EA, Caliari SR, Ouyang L, Vega SL, Truitt R, et al. Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials. 2017;145:23–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Maldonado M, Ico G, Low K, Luu RJ, Nam J. Enhanced lineage-specific differentiation efficiency of human induced pluripotent stem cells by engineering colony dimensionality using electrospun scaffolds. Adv Healthc Mater. 2016;5:1408–12.

    CAS  PubMed  Google Scholar 

  57. Maldonado M, Luu RJ, Ico G, Ospina A, Myung D, Shih H, et al. Lineage-and developmental stage-specific mechanomodulation of induced pluripotent stem cell differentiation. Stem Cell Res Ther. 2017;8:216.

    PubMed  PubMed Central  Google Scholar 

  58. Wu Y, Xiang Y, Fang J, Li X, Lin Z, Dai G, et al. The influence of the stiffness of GelMA substrate on the outgrowth of PC12 cells. Biosci Rep. 2019;39:BSR20181748.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Celikkin N, Mastrogiacomo S, Jaroszewicz J, Walboomers XF, Swieszkowski W. Gelatin methacrylate scaffold for bone tissue engineering: the influence of polymer concentration. J Biomed Mater Res A. 2018;106:201–9.

    CAS  PubMed  Google Scholar 

  60. Peter M, Singh A, Mohankumar K, Jeenger R, Joge A, Gatne MM, et al. Gelatin-based matrices as a tunable platform to study in vitro and in vivo 3D cell invasion. ACS Appl Bio Mater. 2019;2:916–29.

    CAS  PubMed  Google Scholar 

  61. Singh A, Tayalia P. Three-dimensional cryogel matrix for spheroid formation and anti-cancer drug screening. J Biomed Mater Res A. 2020;108:365–76.

    CAS  PubMed  Google Scholar 

  62. Kang H, Shih YRV, Hwang Y, Wen C, Rao V, Seo T, et al. Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells. Acta Biomater. 2014;10:4961–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Llames S, García-Pérez E, Meana Á, Larcher F, del Río M. Feeder layer cell actions and applications. Tissue Eng Part B Rev. 2015;21:345–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Puck TT, Marcus I. A rapid method for viable cell titration and clone production with HeLa cells in tissue culture: the use of X-irradiated cells to supply conditioning factors. Proc Natl Acad Sci U S A. 1955;41:432–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rodin S, Antonsson L, Hovatta O, Tryggvason K. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521–based matrices under xeno-free and chemically defined conditions. Nat Protoc. 2014;9:2354–68.

    CAS  PubMed  Google Scholar 

  66. Somaiah C, Kumar A, Mawrie D, Sharma A, Patil SD, Bhattacharyya J, et al. Collagen promotes higher adhesion, survival and proliferation of mesenchymal stem cells. PLoS One. 2015;10:e0145068.

    PubMed  PubMed Central  Google Scholar 

  67. Amit M, Shariki C, Margulets V, Itskovitz-Eldor J. Feeder layer-and serum-free culture of human embryonic stem cells. Biol Reprod. 2004;70:837–45.

    CAS  PubMed  Google Scholar 

  68. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011;8:424–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Philp D, Chen SS, Fitzgerald W, Orenstein J, Margolis L, Kleinman HK. Complex extracellular matrices promote tissue-specific stem cell differentiation. Stem Cells. 2005;23:288–96.

    PubMed  Google Scholar 

  70. Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 2005;15:378–86.

    CAS  PubMed  Google Scholar 

  71. Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10:1886–90.

    CAS  PubMed  Google Scholar 

  72. Davidenko N, Campbell JJ, Thian ES, Watson CJ, Cameron RE. Collagen–hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomater. 2010;6:3957–68.

    CAS  PubMed  Google Scholar 

  73. Pawelec KM, Best SM, Cameron RE. Collagen: a network for regenerative medicine. J Mater Chem B. 2016;4:6484–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen C, Zhao ML, Zhang RK, Lu G, Zhao CY, Fu F, et al. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats. J Biomed Mater Res A. 2017;105:1324–32.

    CAS  PubMed  Google Scholar 

  75. Khatami N, Khoshfetrat AB, Khaksar M, Zamani ARN, Rahbarghazi R. Collagen-alginate-nano-silica microspheres improved the osteogenic potential of human osteoblast-like MG-63 cells. J Cell Biochem. 2019;120:15069–82.

    CAS  PubMed  Google Scholar 

  76. Hughes CS, Radan L, Betts D, Postovit LM, Lajoie GA. Proteomic analysis of extracellular matrices used in stem cell culture. Proteomics. 2011;11:3983–91.

    CAS  PubMed  Google Scholar 

  77. Baxter MA, Camarasa MV, Bates N. Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res. 2009;3:28–38.

    CAS  PubMed  Google Scholar 

  78. Jacobsen MM, Li D, Rim NG, Backman D, Smith ML, Wong JY. Silk-fibronectin protein alloy fibres support cell adhesion and viability as a high strength, matrix fibre analogue. Sci Rep. 2017;7:45653.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19:971–4.

    CAS  PubMed  Google Scholar 

  80. Kohen NT, Little LE, Healy KE. Characterization of Matrigel interfaces during defined human embryonic stem cell culture. Biointerphases. 2009;4:69–79.

    PubMed  Google Scholar 

  81. Semler EJ, Ranucci CS, Moghe V. Mechanochemical manipulation of hepatocyte aggregation can selectively induce or repress liver-specific function. Biotechnol Bioeng. 2000;69:359–69.

    CAS  PubMed  Google Scholar 

  82. Soofi SS, Last JA, Liliensiek SJ, Nealey F, Murphy CJ. The elastic modulus of Matrigel™ as determined by atomic force microscopy. J Struct Biol. 2009;167:216–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Takahashi Y, Sato S, Kurashima Y, Yamamoto T, Kurokawa S, Yuki Y, et al. A refined culture system for human induced pluripotent stem cell-derived intestinal epithelial organoids. Stem Cell Rep. 2018;10:314–28.

    CAS  Google Scholar 

  84. Khaing ZZ, Seidlits SK. Hyaluronic acid and neural stem cells: implications for biomaterial design. J Mater Chem B. 2015;3:7850–66.

    CAS  PubMed  Google Scholar 

  85. Bierman R. Hyaluronic acid-based hydrogels as an in vitro approach to neural stem/progenitor cell differentiation [Doctoral dissertation]. Los Angeles: University of California, Los Angeles; 2018.

  86. Wang HB, Dembo M, Wang YL. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol. 2000;279:C1345–50.

    CAS  PubMed  Google Scholar 

  87. Wong JY, Velasco A, Rajagopalan P, Pham Q. Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir. 2003;19:1908–13.

    CAS  Google Scholar 

  88. Sachot N, Engel E, Castaño O. Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies. Curr Org Chem. 2014;18:2299–314.

    CAS  Google Scholar 

  89. Brown XQ, Ookawa K, Wong JY. Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response. Biomaterials. 2005;26:3123–9.

    CAS  PubMed  Google Scholar 

  90. Jun I, Han HS, Edwards J, Jeon H. Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. Int J Mol Sci. 2018;19:745.

    PubMed Central  Google Scholar 

  91. Berkovitch Y, Seliktar D. Semi-synthetic hydrogel composition and stiffness regulate neuronal morphogenesis. Int J Pharm. 2017;523:545–55.

    CAS  PubMed  Google Scholar 

  92. Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromol. 2000;1:31–8.

    Google Scholar 

  93. Wei D, Xiao W, Sun J, Zhong M, Guo L, Fan H, et al. A biocompatible hydrogel with improved stiffness and hydrophilicity for modular tissue engineering assembly. J Mater ChemB. 2015;3:2753–63.

    CAS  Google Scholar 

  94. Costantini M, Testa S, Fornetti E, Barbetta A, Trombetta M, Cannata SM, et al. Engineering muscle networks in 3D gelatin methacryloyl hydrogels: influence of mechanical stiffness and geometrical confinement. Front Bioeng Biotechnol. 2017;5:22.

    PubMed  PubMed Central  Google Scholar 

  95. Pepelanova I, Kruppa K, Scheper T, Lavrentieva A. Gelatin-Methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting. Bioengineering (Basel). 2018;5:55.

    CAS  Google Scholar 

  96. Zhao X, Liu S, Yildirimer L, Zhao H, Ding R, Wang H, et al. Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv Func Mater. 2016;26:2809–19.

    CAS  Google Scholar 

  97. Eke G, Mangir N, Hasirci N, MacNeil S, Hasirci V. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials. 2017;129:188–98.

    CAS  PubMed  Google Scholar 

  98. Zhang X, Li J, Ye P, Gao G, Hubbell K, Cui X. Coculture of mesenchymal stem cells and endothelial cells enhances host tissue integration and epidermis maturation through AKT activation in gelatin methacryloyl hydrogel-based skin model. Acta Biomater. 2017;59:317–26.

    CAS  PubMed  Google Scholar 

  99. Kerscher P, Kaczmarek JA, Head SE, Ellis ME, Seeto WJ, Kim J, et al. Direct production of human cardiac tissues by pluripotent stem cell encapsulation in gelatin methacryloyl. ACS Biomater Sci Eng. 2016;3:1499–509.

    PubMed  Google Scholar 

  100. Visser J, Gawlitta D, Benders KE, Toma SM, Pouran B, van Weeren R, et al. Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage-derived matrix particles. Biomaterials. 2015;37:174–82.

    CAS  PubMed  Google Scholar 

  101. Ebrahimi M, Ostrovidov S, Salehi S, Kim SB, Bae H, Khademhosseini A. Enhanced skeletal muscle formation on microfluidic spun gelatin methacryloyl (GelMA) fibres using surface patterning and agrin treatment. J Tissue Eng Regen Med. 2018;12:2151–63.

    CAS  PubMed  Google Scholar 

  102. Lin RZ, Chen YC, Moreno-Luna R, Khademhosseini A, Melero-Martin JM. Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials. 2013;34:6785–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton. 2010;67:545–54.

    CAS  PubMed  Google Scholar 

  104. Donato DM, Ryzhova LM, Meenderink LM, Kaverina I, Hanks SK. Dynamics and mechanism of p130Cas localization to focal adhesions. J Biol Chem. 2010;285:20769–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ciobanasu C, Faivre B, Le Clainche C. Integrating actin dynamics, mechanotransduction and integrin activation: the multiple functions of actin binding proteins in focal adhesions. Eur J Cell Biol. 2013;92:339–48.

    CAS  PubMed  Google Scholar 

  106. Janoštiak R, Pataki AC, Brábek J, Rösel D. Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur J Cell Biol. 2014;93:445–54.

    PubMed  Google Scholar 

  107. Elosegui-Artola A, Andreu I, Beedle AE, Lezamiz A, Uroz M, Kosmalska AJ, et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell. 2017;171:1397–410.

    CAS  PubMed  Google Scholar 

  108. Bissell MJ, Aggeler J. Dynamic reciprocity: how do extracellular matrix and hormones direct gene expression? Prog Clin Biol Res. 1987;249:251–62.

    CAS  PubMed  Google Scholar 

  109. Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15:802–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gumbiner B. Signal transduction by B-catenin. Curr Opin Cell Biol. 1995;7:634–40.

    CAS  PubMed  Google Scholar 

  111. Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R. Nuclear localization of b-catenin by interaction with transcription factor LEF-1. Mech Dev. 1996;59:3–10.

    CAS  PubMed  Google Scholar 

  112. Spadaro D, Le S, Laroche T, Mean I, Jond L, Yan J, et al. Tension-dependent stretching activates ZO-1 to control the junctional localization of its interactors. Curr Biol. 2017;27:3783–95.

    CAS  PubMed  Google Scholar 

  113. Lewis JM, Baskaran R, Taagepera S, Schwartz MA, Wang JY. Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proc Natl Acad Sci U S A. 1996;93:15174–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Speight P, Kofler M, Szászi K, Kapus A. Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFβ-regulated Smad3. Nat Commun. 2016;7:1–17.

    Google Scholar 

  115. Kumar A, Boriek AM. Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. The FASEB J. 2003;17:386–96.

    CAS  PubMed  Google Scholar 

  116. Escoll M, Lastra D, Pajares M, Robledinos-Antón N, Rojo AI, Fernández-Ginés R, et al. Transcription factor NRF2 uses the Hippo pathway effector TAZ to induce tumorigenesis in glioblastomas. Redox Biol. 2020;30:101425.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Li Y, Chu JS, Kurpinski K, Li X, Bautista DM, Yang L, et al. Biophysical regulation of histone acetylation in mesenchymal stem cells. Biophys J. 2011;100:1902–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R, Garcia-Mata R, et al. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat Cell Biol. 2014;16:376–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Driscoll T, Cosgrove BD, Heo SJ, Shurden ZE, Mauck RL. Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys J. 2015;108:2783–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Sudol M, Bork P, Einbond A, Kastury K, Druck T, Negrini M, et al. Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J Biol Chem. 1995;270:14733–41.

    CAS  PubMed  Google Scholar 

  121. Kanai F, Marignani A, Sarbassova D, Yagi R, Hall RA, Donowitz M, et al. TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. The EMBO J. 2000;19:6778–91.

    CAS  PubMed  Google Scholar 

  122. Hong W, Guan KL. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol. 2012;23:785–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz M. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett. 2014;588:2663–70.

    CAS  PubMed  Google Scholar 

  124. Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 2015;25:499–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q, et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 2011;25:51–63.

    PubMed  PubMed Central  Google Scholar 

  126. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158:157–70.

    CAS  PubMed  Google Scholar 

  127. Shao Y, Sang J, Fu J. On human pluripotent stem cell control: the rise of 3D bioengineering and mechanobiology. Biomaterials. 2015;52:26–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Szeto SG, Narimatsu M, Lu M, He X, Sidiqi AM, Tolosa MF, et al. YAP/TAZ are mechanoregulators of TGF-β-Smad signaling and renal fibrogenesis. J Am Soc Nephrol. 2016;27:3117–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kim MK, Jang JW, Bae SC. DNA binding partners of YAP/TAZ. BMB Rep. 2018;51:126–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Huang J, Wu S, Barrera J, Matthews K, Pan D. The Hippo signaling pathway coordinately regulates Cell proliferation apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell. 2005;122:421–34.

    CAS  PubMed  Google Scholar 

  131. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang X, Milton CC, Humbert O, Harvey KF. Transcriptional output of the Salvador/warts/hippo pathway is controlled in distinct fashions in Drosophila melanogaster and mammalian cell lines. Cancer Res. 2009;69:6033–41.

    CAS  PubMed  Google Scholar 

  133. Liu C, Huang W, Lei Q. Regulation and function of the TAZ transcription co-activator. Int J Biochem Mol Bio. 2011;2:247.

    CAS  Google Scholar 

  134. Sun C, De Mello V, Mohamed A, Ortuste Quiroga HP, Garcia-Munoz A, Al Bloshi A, et al. Common and distinctive functions of the hippo effectors Taz and Yap in Skeletal Muscle stem cell function. Stem Cells. 2017;35:1958–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Plouffe SW, Lin KC, Moore JL 3rd, Tan FE, Ma S, Ye Z, et al. The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell. J Biol Chem. 2018;293:11230–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Finch-Edmondson ML, Strauss R, Passman AM, Sudol M, Yeoh GC, Callus BA. TAZ protein accumulation is negatively regulated by YAP abundance in mammalian cells. J Biol Chem. 2015;290:27928–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 2010;24:1106–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Morin-Kensicki EM, Boone BN, Howell M, Stonebraker JR, Teed J, Alb JG, et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol Cell Biol. 2006;26:77–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Tian Y, Kolb R, Hong JH, Carroll J, Li D, You J, et al. TAZ promotes PC2 degradation through a SCFβ-Trcp E3 ligase complex. Mol Cell Biol. 2007;27:6383–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Hossain Z, Ali SM, Ko HL, Xu J, Ng C, Guo K, et al. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci U S A. 2007;104:1631–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Makita R, Uchijima Y, Nishiyama K, Amano T, Chen Q, Takeuchi T, et al. Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol-Renal. 2008;294:F542–53.

    CAS  Google Scholar 

  142. Brenan L. Elucidating the role of YAP in directing mesenchymal stem cell fate. Master of Arts thesis, Boston University. 2015.

  143. Nie P, Li Y, Suo H, Jiang N, Yu D, Fang B. Dasatinib promotes chondrogenic differentiation of human mesenchymal stem cells via the Src/Hippo-YAP signaling pathway. ACS Biomater Sci Eng. 2019;5:5255–65.

    CAS  PubMed  Google Scholar 

  144. Qin H, Hejna M, Liu Y, Percharde M, Wossidlo M, Blouin L, et al. YAP induces human naive pluripotency. Cell Rep. 2016;14:2301–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hsu HT, Estarás C, Huang L, Jones KA. Specifying the anterior primitive streak by modulating YAP1 levels in human pluripotent stem cells. Stem cell Rep. 2018;11:1357–64.

    CAS  Google Scholar 

  146. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell. 2016;29:783–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A. 2006;103:12405–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Zender L, Spector MS, Xue W, Flemming P, Cordon-Cardo C, Silke J, et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell. 2006;125:1253–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 2007;17:2054–60.

    CAS  PubMed  Google Scholar 

  150. Debaugnies M, Sánchez-Danés A, Rorive S, Raphaël M, Liagre M, Parent MA, et al. YAP and TAZ are essential for basal and squamous cell carcinoma initiation. EMBO Rep. 2018;19:e45809.

  151. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–83.

    CAS  PubMed  Google Scholar 

  152. Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signalling and beyond. Physiol Rev. 2014;94:1287–312.

    CAS  PubMed  Google Scholar 

  153. Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Pérez-González C, Castro N, et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol. 2016;18:540–8.

    CAS  PubMed  Google Scholar 

  154. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell. 2013;154:1047–59.

    CAS  PubMed  Google Scholar 

  155. Smith Q, Chan XY, Carmo AM, Trempel M, Saunders M, Gerecht S. Compliant substratum guides endothelial commitment from human pluripotent stem cells. Sci Adv. 2017;3:e1602883.

    PubMed  PubMed Central  Google Scholar 

  156. Price AJ, Huang EY, Sebastiano V, Dunn AR. A semi-interpenetrating network of polyacrylamide and recombinant basement membrane allows pluripotent cell culture in a soft, ligand-rich microenvironment. Biomaterials. 2017;121:179–92.

    CAS  PubMed  Google Scholar 

  157. Wang HB, Dembo M, Hanks SK, Wang YL. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci U S A. 2001;98:11295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Hadden WJ, Young JL, Holle AW, McFetridge ML, Kim DY, Wijesinghe P, et al. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc Natl Acad Sci U S A. 2017;114:5647–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Lachowski D, Cortes E, Robinson B, Rice A, Rombouts K, Del Río Hernández AE. FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis. The FASEB J. 2017;32:1099–107.

    Google Scholar 

  160. Ong CS, Yesantharao P, Huang CY, Mattson G, Boktor J, Fukunishi T, et al. 3D bioprinting using stem cells. Pediatr Res. 2018;83:223–31.

    CAS  PubMed  Google Scholar 

  161. Jeon O, Lee YB, Jeong H, Lee SJ, Wells D, Alsberg E. Individual cell-only bioink and photocurable supporting medium for 3D printing and generation of engineered tissues with complex geometries. Mater Horiz. 2019;6:1625–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Gershovich JG, Buravkova LB. Morphofunctional status and osteogenic differentiation potential of human mesenchymal stromal precursor cells during in vitro modeling of microgravity effects. Bull Exp Biol Med. 2007;144:608–13.

    CAS  PubMed  Google Scholar 

  163. Baio J, Martinez AF, Silva I, Hoehn CV, Countryman S, Bailey L, et al. Cardiovascular progenitor cells cultured aboard the International Space Station exhibit altered developmental and functional properties. NPJ Microgravity. 2018;4:13.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would to acknowledge Sunandan Divatia School of Science, NMIMS (deemed to-be University) and Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, for providing the necessary resources and infrastructure. The work was funded by Department of Biotechnology (DBT), Govt of India, sanction order BT/PR28474/MED/31/393/2018. JKV was provided Senior Research Fellowship by Council of Scientific and Industrial Research (CSIR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad Pethe.

Ethics declarations

Conflict of interest

The authors have no financial conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virdi, J.K., Pethe, P. Biomaterials Regulate Mechanosensors YAP/TAZ in Stem Cell Growth and Differentiation. Tissue Eng Regen Med 18, 199–215 (2021). https://doi.org/10.1007/s13770-020-00301-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-020-00301-4

Keywords

Navigation