Skip to main content

Dynamic Interactions Between Stem Cells and Biomaterials

  • Chapter
  • First Online:
Engineering Materials for Stem Cell Regeneration

Abstract

The cellular microenvironment has been known to direct the cell behaviour through biochemical and mechanical signalling. Different biomaterials have been fabricated to study the impact of biophysical cues on proliferation and stem cell differentiation in vitro. Stem cells have immense promise in regenerative medicine. Therefore, there is a pressing need to understand the interdependency of biophysical signals and biochemical signals in regulating stem cell potency and differentiation. In this chapter, we explore the different types of biomaterials commonly used for studying mechanobiology in stem cells and highlight the primary mechanism and pathways behind extracellular matrix (ECM)-mediated cellular response. Furthermore, we discuss how the understanding of stem cell mechanobiology influences the fields of tissue engineering and regenerative medicine. We also touch upon the importance of mechanobiology in cancer. In short, we have tried to convey to our readers that although current expansion and differentiation methods use biochemical molecules alone, it is crucial to understand that biophysical cues from the stem cell microenvironment can also regulate the proliferation and differentiation of stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amani H, Arzaghi H, Bayandori M, Dezfuli AS, Pazoki-Toroudi H, Shafiee A, Moradi L (2019) Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. Adv Mater Interfaces 6(13):1900572

    Article  CAS  Google Scholar 

  • Amano M, Nakayama M, Kaibuchi K (2010) Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton 67(9):545–554

    Article  CAS  PubMed  Google Scholar 

  • Antich C, de Vicente J, Jiménez G, Chocarro C, Carrillo E, Montañez E, Gálvez-Martín P, Marchal JA (2020) Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater 106:114–123

    Article  CAS  PubMed  Google Scholar 

  • Baharvand H, Hashemi SM, Ashtiani SK, Farrokhi A (2004) Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol 50(7):645–652

    Article  CAS  Google Scholar 

  • Bai HY, Chen GA, Mao GH, Song TR, Wang YX (2010) Three step derivation of cartilage like tissue from human embryonic stem cells by 2D-3D sequential culture in vitro and further implantation in vivo on alginate/PLGA scaffolds. J Biomed Mater Res A 94(2):539–546

    PubMed  Google Scholar 

  • Bailey DD, Zhang Y, van Soldt BJ, Jiang M, Suresh S, Nakagawa H, Rustgi AK, Aceves SS, Cardoso WV, Que J (2019) Use of hPSC-derived 3D organoids and mouse genetics to define the roles of YAP in the development of the esophagus. Development 146(23):dev178855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19(1):677–695

    Article  CAS  PubMed  Google Scholar 

  • Briquez PS, Hubbell JA, Martino MM (2015) Extracellular matrix-inspired growth factor delivery systems for skin wound healing. Adv Wound Care 4:479–489

    Article  Google Scholar 

  • Brown BN, Londono R, Tottey S, Zhang L, Kukla KA, Wolf MT, Daly KA, Reing JE, Badylak SF (2012) Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 8(3):978–987

    Article  CAS  PubMed  Google Scholar 

  • Budday S, Nay R, de Rooij R, Steinmann P, Wyrobek T, Ovaert TC, Kuhl E (2015) Mechanical properties of grey and white matter brain tissue by indentation. J Mech Behav Biomed Mater 46:318–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G, Sahai E (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15(6):637–646

    Article  CAS  PubMed  Google Scholar 

  • Canel M, Serrels A, Frame MC, Brunton VG (2013) E-cadherin–integrin crosstalk in cancer invasion and metastasis. J Cell Sci 126(2):393–401

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Li YSJ, Chou CH, Chiew MY, Huang HD, Ho JHC, Chien S, Lee OK (2020) Control of matrix stiffness promotes endodermal lineage specification by regulating SMAD2/3 via lncRNA LINC00458. Sci Adv 6(6):eaay0264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevallay B, Herbage D (2000) Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med Biol Eng Comput 38(2):211–218

    Article  CAS  PubMed  Google Scholar 

  • Choudhury AR, Gupta S, Chaturvedi PK, Kumar N, Pandey D (2019) Mechanobiology of cancer stem cells and their niche. Cancer Microenviron 12:17–27

    Article  CAS  Google Scholar 

  • Ciobanasu C, Faivre B, Le Clainche C (2013) Integrating actin dynamics, mechanotransduction and integrin activation: the multiple functions of actin binding proteins in focal adhesions. Eur J Cell Biol 92(10–11):339–348

    Article  CAS  PubMed  Google Scholar 

  • Cozzolino AM, Noce V, Battistelli C, Marchetti A, Grassi G, Cicchini C, Tripodi M, Amicone L (2016) Modulating the substrate stiffness to manipulate differentiation of resident liver stem cells and to improve the differentiation state of hepatocytes. Stem Cells Int 2016:5481493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cun X, Hosta-Rigau L (2020) Topography: a biophysical approach to direct the fate of mesenchymal stem cells in tissue engineering applications. Nanomaterials 10(10):2070

    Article  CAS  PubMed Central  Google Scholar 

  • Del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323(5914):638–641

    Article  PubMed  CAS  Google Scholar 

  • Deroanne CF, Lapiere CM, Nusgens BV (2001) In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc Res 49(3):647–658

    Article  CAS  PubMed  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  CAS  PubMed  Google Scholar 

  • Donato DM, Ryzhova LM, Meenderink LM, Kaverina I, Hanks SK (2010) Dynamics and mechanism of p130Cas localization to focal adhesions. J Biol Chem 285(27):20769–20779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driscoll TP, Cosgrove BD, Heo SJ, Shurden ZE, Mauck RL (2015) Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys J 108(12):2783–2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziki JL, Badylak SF (2018) Immunomodulatory biomaterials. Curr Opin Biomed Eng 6:51–57

    Article  Google Scholar 

  • Dziki JL, Giglio RM, Sicari BM, Wang DS, Gandhi RM, Londono R, Dearth CL, Badylak SF (2018) The effect of mechanical loading upon extracellular matrix bioscaffold-mediated skeletal muscle remodeling. Tissue Eng A 24(1–2):34–46

    Article  CAS  Google Scholar 

  • Elosegui-Artola A, Andreu I, Beedle AE, Lezamiz A, Uroz M, Kosmalska AJ, Oria R, Kechagia JZ, Rico-Lastres P, Le Roux AL, Shanahan CM (2017) Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171(6):1397–1410

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ, Richert L, Wong JY, Picart C, Discher DE (2004) Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion. Surf Sci 570(1–2):142–154

    Article  CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  • Escoll M, Lastra D, Pajares M, Robledinos-Antón N, Rojo AI, Fernández-Ginés R, Mendiola M, Martínez-Marín V, Esteban I, López-Larrubia P, Gargini R (2020) Transcription factor NRF2 uses the Hippo pathway effector TAZ to induce tumorigenesis in glioblastomas. Redox Biol 30:101425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26(17):2839–2845

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LS, Gerecht S, Fuller J, Shieh HF, Vunjak-Novakovic G, Langer R (2007) Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials 28(17):2706–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flanagan LA, Ju YE, Marg B, Osterfield M, Janmey PA (2002) Neurite branching on deformable substrates. NeuroReport 13(18):2411

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujiwara Y, Tsunedomi R, Yoshimura K, Matsukuma S, Fujiwara N, Nishiyama M, Kanekiyo S, Matsui H, Shindo Y, Tokumitsu Y, Yoshida S, Iida M, Suzuki N, Takeda S, Ioka T, Hazama S, Nagano H (2021) Pancreatic cancer stem-like cells with high calreticulin expression associated with immune surveillance. Pancreas 50(3):405–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García A, Reyes CD (2005) Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res 84(5):407–413

    Article  PubMed  Google Scholar 

  • Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33

    Article  CAS  PubMed  Google Scholar 

  • Gerardo H, Lima A, Carvalho J, Ramos JR, Couceiro S, Travasso RD, das Neves RP, Grãos M (2019) Soft culture substrates favor stem-like cellular phenotype and facilitate reprogramming of human mesenchymal stem/stromal cells (hMSCs) through mechanotransduction. Sci Rep 9(1):1–18

    Article  CAS  Google Scholar 

  • Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gkretsi V, Stylianopoulos T (2018) Cell adhesion and matrix stiffness: coordinating cancer cell invasion and metastasis. Front Oncol 8:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B (2006) Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers. J Cell Biol 172(2):259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5(1):17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R, Garcia-Mata R, Burridge K (2014) Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat Cell Biol 16(4):376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumbiner BM (1995) Signal transduction by β-catenin. Curr Opin Cell Biol 7(5):634–640

    Article  CAS  PubMed  Google Scholar 

  • Gungordu HI, Bao M, van Helvert S, Jansen JA, Leeuwenburgh SC, Walboomers XF (2019) Effect of mechanical loading and substrate elasticity on the osteogenic and adipogenic differentiation of mesenchymal stem cells. J Tissue Eng Regen Med 13(12):2279–2290

    Article  CAS  PubMed  Google Scholar 

  • Hadden WJ, Young JL, Holle AW, McFetridge ML, Kim DY, Wijesinghe P, Taylor-Weiner H, Wen JH, Lee AR, Bieback K, Vo BN (2017) Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc Natl Acad Sci 114(22):5647–5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13(9):591–600

    Article  CAS  PubMed  Google Scholar 

  • Harrison RG (1911) On the stereotropism of embryonic cells. Science 34(870):279–281

    Article  CAS  PubMed  Google Scholar 

  • Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci 101(39):14228–14233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R (1996) Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech Dev 59(1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Hwang NS, Kim MS, Sampattavanich S, Baek JH, Zhang Z, Elisseeff J (2006) Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells 24(2):284–291

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (2020) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  Google Scholar 

  • Ireland RG, Simmons CA (2015) Human pluripotent stem cell mechanobiology: manipulating the biophysical microenvironment for regenerative medicine and tissue engineering applications. Stem Cells 33(11):3187–3196

    Article  PubMed  Google Scholar 

  • Jang M, An J, Oh SW, Lim JY, Kim J, Choi JK, Cheong JH, Kim P (2020) Matrix stiffness epigenetically regulates the oncogenic activation of the Yes-associated protein in gastric cancer. Nat Biomed Eng 5:114

    Article  PubMed  CAS  Google Scholar 

  • Janoštiak R, Pataki AC, Brábek J, Rösel D (2014) Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur J Cell Biol 93(10–12):445–454

    Article  PubMed  CAS  Google Scholar 

  • Jeong HJ, Nam H, Jang J, Lee SJ (2020) 3D bioprinting strategies for the regeneration of functional tubular tissues and organs. Bioengineering 7(2):32

    Article  CAS  PubMed Central  Google Scholar 

  • Justin RT, Engler AJ (2011) Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One 6(1):e15978

    Article  CAS  Google Scholar 

  • Kawano S, Kojima M, Higuchi Y, Sugimoto M, Ikeda K, Sakuyama N, Takahashi S, Hayashi R, Ochiai A, Saito N (2015) Assessment of elasticity of colorectal cancer tissue, clinical utility, pathological and phenotypical relevance. Cancer Sci 106(9):1232–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Boriek AM (2003) Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 17(3):386–396

    Article  CAS  PubMed  Google Scholar 

  • Lachowski D, Cortes E, Robinson B, Rice A, Rombouts K, Del Río Hernández AE (2018) FAK controls the mechanical activation of YAP, a transcriptional regulator required for durotaxis. FASEB J 32(2):1099–1107

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Han SB, Lee JH, Kim HW, Kim DH (2019) Cancer mechanobiology: microenvironmental sensing and metastasis. ACS Biomater Sci Eng 5(8):3735–3752

    Article  CAS  PubMed  Google Scholar 

  • Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci 100(22):12741–12746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodi D, Iannitti T, Palmieri B (2011) Stem cells in clinical practice: applications and warnings. J Exp Clin Cancer Res 30(1):1–20

    Article  Google Scholar 

  • Maldonado M, Wong LY, Echeverria C, Ico G, Low K, Fujimoto T, Johnson JK, Nam J (2015) The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells. Biomaterials 50:10–19

    Article  CAS  PubMed  Google Scholar 

  • Mokarram N, Bellamkonda RV (2014) A perspective on immunomodulation and tissue repair. Ann Biomed Eng 42(2):338–351

    Article  PubMed  Google Scholar 

  • Mouw JK, Ou G, Weaver VM (2014) Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 15(12):771–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muduli S, Chen LH, Li MP, Heish ZW, Liu CH, Kumar S, Alarfaj AA, Munusamy MA, Benelli G, Murugan K, Wang HC (2017) Stem cell culture on polyvinyl alcohol hydrogels having different elasticity and immobilized with ECM-derived oligopeptides. J Polym Eng 37(7):647–660

    Article  CAS  Google Scholar 

  • Musah S, Morin SA, Wrighton PJ, Zwick DB, Jin S, Kiessling LL (2012) Glycosaminoglycan-binding hydrogels enable mechanical control of human pluripotent stem cell self-renewal. ACS Nano 6(11):10168–10177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musah S, Wrighton PJ, Zaltsman Y, Zhong X, Zorn S, Parlato MB, Hsiao C, Palecek SP, Chang Q, Murphy WL, Kiessling LL (2014) Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proc Natl Acad Sci 111(38):13805–13810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N (2019) Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 76(17):3323–3348

    Article  CAS  PubMed  Google Scholar 

  • Papageorgis P, Stylianopoulos T (2015) Role of TGFbeta in regulation of the tumor microenvironment and drug delivery. Int J Oncol 46:933–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SE, Georgescu A, Huh D (2019) Organoids-on-a-chip. Science 364(6444):960–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA (2005) Tensional homeostasis and the malignant phenotype. Cancer cell 8(3):241–254

    Article  CAS  PubMed  Google Scholar 

  • Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci 94(25):13661–13665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepelanova I, Kruppa K, Scheper T, Lavrentieva A (2018) Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting. Bioengineering 5(3):55

    Article  CAS  PubMed Central  Google Scholar 

  • Rahman M, Jamil HM, Akhtar N, Rahman KMT, Islam R, Asaduzzaman SM (2016) Stem cell and cancer stem cell: a tale of two cells. Progr Stem Cell 3(02):97–108

    Article  Google Scholar 

  • Ruoslahti E (1996) Brain extracellular matrix. Glycobiology 6(5):489–492

    Article  CAS  PubMed  Google Scholar 

  • Sadtler K, Estrellas K, Allen BW, Wolf MT, Fan H, Tam AJ, Patel CH, Luber BS, Wang H, Wagner KR, Powell JD (2016) Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 352(6283):366–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadtler K, Sommerfeld SD, Wolf MT, Wang X, Majumdar S, Chung L, Kelkar DS, Pandey A, Elisseeff JH (2017) Proteomic composition and immunomodulatory properties of urinary bladder matrix scaffolds in homeostasis and injury. Semin Immunol 29:14–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO (2020) A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 20:1–13

    Article  CAS  Google Scholar 

  • Samani A, Zubovits J, Plewes D (2007) Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys Med Biol 52(6):1565

    Article  PubMed  Google Scholar 

  • Shackleton M (2010) Normal stem cells and cancer stem cells: similar and different. Semin Cancer Biol 20(2):85–92

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Yuan W, Khan M, Li Q, Feng Y, Yao F, Zhang W (2015) Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation. Mater Sci Eng C 50:201–209

    Article  CAS  Google Scholar 

  • Shih YRV, Tseng KF, Lai HY, Lin CH, Lee OK (2011) Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 26(4):730–738

    Article  CAS  PubMed  Google Scholar 

  • Sorrentino G, Rezakhani S, Yildiz E, Nuciforo S, Heim MH, Lutolf MP, Schoonjans K (2020) Mechano-modulatory synthetic niches for liver organoid derivation. Nat Commun 11(1):1–10

    Article  CAS  Google Scholar 

  • Speight P, Kofler M, Szászi K, Kapus A (2016) Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFβ-regulated Smad3. Nat Commun 7(1):1–17

    Article  CAS  Google Scholar 

  • Stabler CL, Li Y, Stewart JM, Keselowsky BG (2019) Engineering immunomodulatory biomaterials for type 1 diabetes. Nat Rev Mater 4(6):429–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Fu J (2014) Harnessing mechanobiology of human pluripotent stem cells for regenerative medicine. ACS Chem Neurosci 5(8):621–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Yong KMA, Villa-Diaz LG, Zhang X, Chen W, Philson R, Weng S, Xu H, Krebsbach PH, Fu J (2014) Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat Mater 13(6):599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Luo Z, Lee J, Kim HJ, Lee K, Tebon P, Feng Y, Dokmeci MR, Sengupta S, Khademhosseini A (2019) Organ-on-a-chip for cancer and immune organs modeling. Adv Healthc Mater 8(4):1801363

    Article  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Théry M (2010) Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 123(24):4201–4213

    Article  PubMed  CAS  Google Scholar 

  • Tilghman RW, Cowan CR, Mih JD, Koryakina Y, Gioeli D, Slack-Davis JK, Blackman BR, Tschumperlin DJ, Parsons JT (2010) Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS One 5(9):e12905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toh WS, Lim TC, Kurisawa M, Spector M (2012) Modulation of mesenchymal stem cell chondrogenesis in a tuneable hyaluronic acid hydrogel microenvironment. Biomaterials 33(15):3835–3845

    Article  CAS  PubMed  Google Scholar 

  • Tse JR, Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. Curr Protoc Cell Biol 47(1):10–16

    Article  Google Scholar 

  • Turdo A, Veschi V, Gaggianesi M, Chinnici A, Bianca P, Todaro M, Stassi G (2019) Meeting the challenge of targeting cancer stem cells. Front Cell Dev Biol 7

    Google Scholar 

  • Vincent LG, Choi YS, Alonso-Latorre B, Del Álamo JC, Engler AJ (2013) Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol J 8(4):472–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vining KH, Mooney DJ (2017) Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol 18(12):728–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virdi JK, Pethe P (2021) Biomaterials regulate mechanosensors YAP/TAZ in stem cell growth and differentiation. Tissue Eng Regen Med 18:199–215

    Article  PubMed  Google Scholar 

  • Wang HB, Dembo M, Hanks SK, Wang YL (2001) Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci 98(20):11295–11300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, Li X (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8(5):761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47(4):1394–1400

    Article  CAS  PubMed  Google Scholar 

  • Yue B (2014) Biology of the extracellular matrix: an overview. J Glaucoma 23:S20

    Article  PubMed  Google Scholar 

  • Zaman MH, Trapani LM, Sieminski AL, MacKellar D, Gong H, Kamm RD, Wells A, Lauffenburger DA, Matsudaira P (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci 103(29):10889–10894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Li X, Janairo RRR, Kwong G, Tsou AD, Chu JS, Wang A, Yu J, Wang D, Li S (2019) Matrix stiffness modulates the differentiation of neural crest stem cells in vivo. J Cell Physiol 234(5):7569–7578

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad Pethe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Virdi, J.K., Pethe, P. (2021). Dynamic Interactions Between Stem Cells and Biomaterials. In: Sheikh, F.A. (eds) Engineering Materials for Stem Cell Regeneration. Springer, Singapore. https://doi.org/10.1007/978-981-16-4420-7_15

Download citation

Publish with us

Policies and ethics