Skip to main content

Advertisement

Log in

Histological analysis of in vitro co-culture and in vivo mice co-transplantation of stem cell-derived adipocyte and osteoblast

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Many researchers have focused on the role of adipocytes in increasing efficient bone tissue engineering and osteogenic differentiation of stem cells. Previous reports have not reached a definite consensus on whether adipocytes positively influence in vitro osteogenic differentiation and in vivo bone formation. We investigated the adipocyte influence on osteogenic differentiation from adipose-derived stromal cells (ADSCs) and bone formation through histological analysis in vitro and in vivo. Using the direct co-culture system, we analyzed the influence of adipocytes to promote the differentiation fate of ADSCs. Using co-transplantation of ADSC-derived adipocytes and osteoblasts into the dorsal region of mice, the osteogenesis and bone quality were determined by histological morphology, radiography, and the measurement of the Ca2+ concentration. The adipocyte negatively affected the osteoblast differentiation of ADSCs in the in vitro system and induced osteogenesis of osteoblasts in the in vivo system through co-transplantation. Interestingly, in the co-transplanted adipocytes and osteoblasts, the bone formation areas decreased in the osteoblast only group compared with the mixed adipocytes and osteoblast group 6 weeks after transplantation. Conversely, co-transplantation and osteoblast transplantation had similar degrees of calcification as observed from radiography analysis and the measurement of the Ca2+ concentrations. Our results revealed that adipocytes inhibited osteoblast differentiation in vitro but enhanced the efficacy of osteogenesis in vivo. In addition, the adipocytes controlled the activity of osteoclasts in the newly formed bone tissue. Our approach can be used to reconstruct bone using stem cell-based tissue engineering and to enhance the understanding of the role adipocytes play.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heath CA. Cells for tissue engineering. Trends Biotechnol 2000;18:17–19.

    Article  CAS  PubMed  Google Scholar 

  2. Seong JM, Kim BC, Park JH, Kwon IK, Mantalaris A, Hwang YS. Stem cells in bone tissue engineering. Biomed Mater 2010;5:062001.

    Article  PubMed  Google Scholar 

  3. Dawson JI, Kanczler J, Tare R, Kassem M, Oreffo RO. Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies -where are we now? Stem Cells 2014;32:35–44.

    Article  CAS  PubMed  Google Scholar 

  4. Bodle JC, Hanson AD, Loboa EG. Adipose-derived stem cells in functional bone tissue engineering: lessons from bone mechanobiology. Tissue Eng Part B Rev 2011;17:195–211.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marolt D, Knezevic M, Novakovic GV. Bone tissue engineering with human stem cells. Stem Cell Res Ther 2010;1:10.

    Article  PubMed  Google Scholar 

  6. Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM. Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 2009;19:109–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muruganandan S, Roman AA, Sinal CJ. Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: cross talk with the osteoblastogenic program. Cell Mol Life Sci 2009;66:236–253.

    Article  CAS  PubMed  Google Scholar 

  8. Ball SG, Shuttleworth AC, Kielty CM. Direct cell contact influences bone marrow mesenchymal stem cell fate. Int J Biochem Cell Biol 2004;36:714–727.

    Article  CAS  PubMed  Google Scholar 

  9. Hammoudi TM, Rivet CA, Kemp ML, Lu H, Temenoff JS. Three-dimensional in vitro tri-culture platform to investigate effects of crosstalk between mesenchymal stem cells, osteoblasts, and adipocytes. Tissue Eng Part A 2012;18:1686–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dupont KM, Sharma K, Stevens HY, Boerckel JD, García AJ, Guldberg RE. Human stem cell delivery for treatment of large segmental bone defects. Proc Natl Acad Sci U S A 2010;107:3305–3310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol 2015;11:140–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Treiser MD, Yang EH, Gordonov S, Cohen DM, Androulakis IP, Kohn J, et al. Cytoskeleton-based forecasting of stem cell lineage fates. Proc Natl Acad Sci U S A 2010;107:610–615.

    Article  CAS  PubMed  Google Scholar 

  13. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010;466:829–834.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423:337–342.

    Article  CAS  PubMed  Google Scholar 

  15. Takada I, Kouzmenko AP, Kato S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 2009;5:442–447.

    Article  CAS  PubMed  Google Scholar 

  16. James AW. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo) 2013;2013:684736.

    Google Scholar 

  17. Wan Y. PPAR in bone homeostasis. Trends Endocrinol Metab 2010;21: 722–728.

    Article  CAS  PubMed  Google Scholar 

  18. Jeon MJ, Kim JA, Kwon SH, Kim SW, Park KS, Park SW, et al. Activation of peroxisome proliferator-activated receptor-gamma inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. J Biol Chem 2003; 278:23270–23277.

    Article  CAS  PubMed  Google Scholar 

  19. Sinclair SS, Burg KJ. Effect of osteoclast co-culture on the differentiation of human mesenchymal stem cells grown on bone graft granules. J Biomater Sci Polym Ed 2011;22:789–808.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang H, Lu W, Zhao Y, Rong P, Cao R, Gu W, et al. Adipocytes derived from human bone marrow mesenchymal stem cells exert inhibitory effects on osteoblastogenesis. Curr Mol Med 2011;11:489–502.

    Article  PubMed  Google Scholar 

  21. Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 2005;331:520–526.

    Article  CAS  PubMed  Google Scholar 

  22. Wu Y, Tu Q, Valverde P, Zhang J, Murray D, Dong LQ, et al. Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice. Am J Physiol Endocrinol Metab 2014;306:E1418–E1430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 2002;175:405–415.

    Article  CAS  PubMed  Google Scholar 

  24. Kang SW, Cha BH, Park H, Park KS, Lee KY, Lee SH. The effect of conjugating RGD into 3D alginate hydrogels on adipogenic differentiation of human adipose-derived stromal cells. Macromol Biosci 2011;11:673–679.

    Article  CAS  PubMed  Google Scholar 

  25. Kang SW, Kim JS, Park KS, Cha BH, Shim JH, Kim JY, et al. Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone 2011;48:298–306.

    Article  CAS  PubMed  Google Scholar 

  26. Hwang ST, Kang SW, Lee SJ, Lee TH, Suh W, Shim SH, et al. The expansion of human ES and iPS cells on porous membranes and proliferating human adipose-derived feeder cells. Biomaterials 2010;31:8012–8021.

    Article  CAS  PubMed  Google Scholar 

  27. Jung SY, Ko YJ, Jang HS, Kang SW, Park JH. The effect of carrier for BMP-2 delivery on histological aspects of tissue-engineered bone. Tissue Eng Regen Med 2013;10:341–346.

    Article  CAS  Google Scholar 

  28. Kang SW, Lee JS, Park MS, Park JH, Kim BS. Enhancement of in vivo bone regeneration efficacy of human mesenchymal stem cells. J Microbiol Biotechnol 2008;18:975–982.

    CAS  PubMed  Google Scholar 

  29. Lee SJ, Kang SW, Do HJ, Han I, Shin DA, Kim JH, et al. Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells. Biomaterials 2010;31:5652–5659.

    Article  CAS  PubMed  Google Scholar 

  30. Lee TJ, Kang SW, Bhang SH, Kang JM, Kim BS. Apatite-coated porous poly(lactic-co-glycolic acid) microspheres as an injectable bone substitute. J Biomater Sci Polym Ed 2010;21:635–645.

    Article  CAS  PubMed  Google Scholar 

  31. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med 2013;19:1252–1263.

    Article  CAS  PubMed  Google Scholar 

  32. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 1998;78:783–809.

    CAS  PubMed  Google Scholar 

  33. Rondinone CM. Adipocyte-derived hormones, cytokines, and mediators. Endocrine 2006;29:81–90.

    Article  CAS  PubMed  Google Scholar 

  34. Tang QQ, Lane MD. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem 2012;81:715–736.

    Article  CAS  PubMed  Google Scholar 

  35. Liu LF, Shen WJ, Zhang ZH, Wang LJ, Kraemer FB. Adipocytes decrease Runx2 expression in osteoblastic cells: roles of PPAR? and adiponectin. J Cell Physiol 2010;225:837–845.

    Article  CAS  PubMed  Google Scholar 

  36. Bruderer M, Richards RG, Alini M, Stoddart MJ. Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater 2014;28:269–286.

    CAS  PubMed  Google Scholar 

  37. Chen T, Wu YW, Lu H, Guo Y, Tang ZH. Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells by activating the APPL1-AMPK signaling pathway. Biochem Biophys Res Commun 2015;461:237–242.

    Article  CAS  PubMed  Google Scholar 

  38. Soukas A, Socci ND, Saatkamp BD, Novelli S, Friedman JM. Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J Biol Chem 2001;276:34167–34174.

    Article  CAS  PubMed  Google Scholar 

  39. Boyce BF, Xing L. The RANKL/RANK/OPG pathway. Curr Osteoporos Rep 2007;5:98–104.

    Article  PubMed  Google Scholar 

  40. Kohli SS, Kohli VS. Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J Endocrinol Metab 2011;15:175–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Savopoulos Ch, Dokos Ch, Kaiafa G, Hatzitolios A. Adipogenesis and osteoblastogenesis: trans-differentiation in the pathophysiology of bone disorders. Hippokratia 2011;15:18–21.

    PubMed  PubMed Central  Google Scholar 

  42. Modica S, Wolfrum C. Bone morphogenic proteins signaling in adipogenesis and energy homeostasis. Biochim Biophys Acta 2013;1831:915–923.

    Article  CAS  PubMed  Google Scholar 

  43. Merheb J, Temmerman A, Coucke W, Rasmusson L, Kübler A, Thor A, et al. Relation between spongy bone density in the maxilla and skeletal bone density. Clin Implant Dent Relat Res 2015;17:1180–1187.

    Article  PubMed  Google Scholar 

  44. Lillie EM, Urban JE, Lynch SK, Weaver AA, Stitzel JD. Evaluation of skull cortical thickness changes with age and sex from computed tomography scans. J Bone Miner Res 2016;31:299–307.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung-Min Chung, Sung-Hwan Moon or Sun-Woong Kang.

Additional information

These authors equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SS., Choi, JJ., Lee, DE. et al. Histological analysis of in vitro co-culture and in vivo mice co-transplantation of stem cell-derived adipocyte and osteoblast. Tissue Eng Regen Med 13, 227–234 (2016). https://doi.org/10.1007/s13770-016-9094-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-9094-1

Keywords

Navigation