Skip to main content
Log in

Chitosan-poly(vinyl alcohol) nanofibers by free surface electrospinning for tissue engineering applications

  • Original Article
  • Biomaterials
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Deformities in tissues and organs can be treated by using tissue engineering approach offering the development of biologically functionalized scaffolds from a variety of polymer blends which mimic the extracellular matrix and allow adjusting the material properties to meet the defect architecture. In recent years, research interest has been shown towards the development of chitosan (CS) based biomaterials for tissue engineering applications, because of its minimal foreign body reactions, intrinsic antibacterial property, biocompatibility, biodegradability and ability to be molded into various geometries and forms thereby making it suitable for cell ingrowth and conduction. The present work involves the fabrication of nanofibrous scaffold from CS and poly(vinyl alcohol) blends by free-surface electrospinning method. The morphology and functional characteristics of the developed scaffolds were assessed by field emission scanning electron microscopy and fourier transformed infra-red spectra analysis. The morphological analysis showed the average fiber diameter was 269 nm and thickness of the mat was 200–300 µm. X-ray diffraction study confirmed the crystalline nature of the prepared scaffolds, whereas hydrophilic characteristic of the prepared scaffolds was confirmed by measured contact angle. The scaffolds possess an adequate biodegradable, swelling and mechanical property that is found desirable for tissue engineering applications. The cell study using umbilical cord blood-derived mesenchymal stem cells has confirmed the in vitro biocompatibility and cell supportive property of the scaffold thereby depicting their potentiality for future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nitya G, Nair GT, Mony U, Chennazhi KP, Nair SV. In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci Mater Med 2012;23:1749–1761.

    Article  CAS  PubMed  Google Scholar 

  2. Yang K, Wang X, Wang Y. Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem 2007;13:485–500.

    CAS  Google Scholar 

  3. Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 2003;22:81–91.

    Article  CAS  PubMed  Google Scholar 

  4. Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Comp Sci Technol 2005;65:2385–2406.

    Article  CAS  Google Scholar 

  5. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering:state of the art and future trends. Macromol Biosci 2004;4:743–765.

    Article  CAS  PubMed  Google Scholar 

  6. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application:a review. Int J Polym Sci 2011;2011:1–19.

    Article  Google Scholar 

  7. Di Martino A, Sittinger M, Risbud MV. Chitosan:a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005;26:5983–5990.

    Article  PubMed  Google Scholar 

  8. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 2008;26:1–21.

    Article  CAS  PubMed  Google Scholar 

  9. Rinaudo M. Chitin and chitosan:properties and applications. Prog Polym Sci 2006;31:603–632.

    Article  CAS  Google Scholar 

  10. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polym 2001;42:261–272.

    Article  CAS  Google Scholar 

  11. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Sci Technol 2003;63:2223–2253.

    Article  CAS  Google Scholar 

  12. Higashi S, Yamamuro T, Nakamura T, Ikada Y, Hyon SH, Jamshidi K. Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials 1986;7:183–187.

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 2005;26:3919–3928.

    Article  CAS  PubMed  Google Scholar 

  14. Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 2005;26:611–619.

    Article  CAS  PubMed  Google Scholar 

  15. Xu HH, Simon CG Jr. Fast setting calcium phosphate-chitosan scaffold:mechanical properties and biocompatibility. Biomaterials 2005;26:1337–1348.

    Article  PubMed  Google Scholar 

  16. Kim SB, Kim YJ, Yoon TL, Park SA, Cho IH, Kim EJ, et al. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement. Biomaterials 2004;25:5715–5723.

    Article  CAS  PubMed  Google Scholar 

  17. Kim SE, Park JH, Cho YW, Chung H, Jeong SY, Lee EB, et al. Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta1:implications for cartilage tissue engineering. J Control Release 2003;91:365–374.

    Article  CAS  PubMed  Google Scholar 

  18. Hsieh CY, Tsai SP, Wang DM, Chang YN, Hsieh HJ. Preparation of gamma-PGA/chitosan composite tissue engineering matrices. Biomaterials 2005;26:5617–5623.

    Article  CAS  PubMed  Google Scholar 

  19. Charernsriwilaiwat N, Opanasopit P, Rojanarata T, Ngawhirunpat T, Supaphol P. Preparation and characterization of chitosan-hydroxybenzotriazole/ polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydr Polym 2010;81:675–680.

    Article  CAS  Google Scholar 

  20. Soppimath KS, Kulkarni AR, Aminabhavi TM. Controlled release of antihypertensive drug from the interpenetrating network poly(vinyl alcohol)-guar gum hydrogel microspheres. J Biomater Sci Polym Ed 2000;11:27–43.

    Article  CAS  PubMed  Google Scholar 

  21. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure:a novel scaffold for tissue engineering. J Biomed Mater Res 2002;60:613–621.

    Article  CAS  PubMed  Google Scholar 

  22. Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 2004;4:933–938.

    Article  CAS  Google Scholar 

  23. Zhou FL, Gong RH, Porat I. Mass production of nanofiber assemblies by electrostatic spinning. Polym Int 2009;58:331–342.

    Article  CAS  Google Scholar 

  24. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315–317.

    CAS  PubMed  Google Scholar 

  25. Yoon HH, Han MJ, Park JK, Lee JH, Seo YK. Effect of low temperature on Schwann-like cell differentiation of bone marrow mesenchymal stem cells. Tissue Eng Regen Med 2015;12:259–267.

    Article  CAS  Google Scholar 

  26. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24:1294–1301.

    Article  CAS  PubMed  Google Scholar 

  27. Bissoyi A, Pramanik K. Effects of non-toxic cryoprotective agents on the viability of cord blood derived MNCs. Cryo Letters 2013;34:453–465.

    CAS  PubMed  Google Scholar 

  28. Alhosseini SN, Moztarzadeh F, Mozafari M, Asgari S, Dodel M, Samadikuchaksaraei A, et al. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int J Nanomed 2012;7:25–34.

    CAS  Google Scholar 

  29. Liang JZ, Zhong L. An elongation viscosity equation of polymer melts based on the Moore dynamic model. J Elastom Plast 2014;46:662–672.

    Article  CAS  Google Scholar 

  30. Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Banaprasert T, Damrongsakkul S. Properties of collagen/chitosan scaffolds for skin tissue engineering. J Metal Mater Min 2006;16:37–44.

    CAS  Google Scholar 

  31. Ma Z, Kotaki M, Yong T, He W, Ramakrishna S. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 2005;26:2527–2536.

    Article  CAS  PubMed  Google Scholar 

  32. He W, Ma Z, Yong T, Teo WE, Ramakrishna S. Fabrication of collagencoated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 2005;26:7606–7615.

    Article  CAS  PubMed  Google Scholar 

  33. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 2005;26:6176–6184.

    Article  CAS  PubMed  Google Scholar 

  34. Paipitak K, Pornpra T, Mongkontalang P, Techitdheer W, Pecharapa W. Characterization of PVA-chitosan nanofibers prepared by electrospinning. Procedia Eng 2011;8:101–105.

    Article  CAS  Google Scholar 

  35. Desai K, Kit K, Li J, Zivanovic S. Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules 2008;9:1000–1006.

    Article  CAS  PubMed  Google Scholar 

  36. Ranjan A, Webster TJ. Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films. Nanotechnology 2009;20:305102.

    Article  PubMed  Google Scholar 

  37. Curtis A, Wilkinson C. Topographical control of cells. Biomaterials 1997;18:1573–1583.

    Article  CAS  PubMed  Google Scholar 

  38. Hatano K, Inoue H, Kojo T, Matsunaga T, Tsujisawa T, Uchiyama C, et al. Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cells cultured on polystyrene. Bone 1999;25:439–445.

    Article  CAS  PubMed  Google Scholar 

  39. Chung TW, Liu DZ, Wang SY, Wang SS. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials 2003;24:4655–4661.

    Article  CAS  PubMed  Google Scholar 

  40. Bartolo LD, Rende M, Morelli S, Giusi G, Salerno S, Piscioneri A, et al. Influence of membrane surface properties on the growth of neuronal cells isolated form hippocampus. J Membrane Sci 2008;325:139–149.

    Article  Google Scholar 

  41. Zhang YY, Huang XB, Duan B, Wu LL, Li S, Yuan SY. Preparation of electrospun chitosan/poly(vinyl alcohol) membranes. Colloid Polym Sci 2007;285:855–863.

    Article  CAS  Google Scholar 

  42. Sionkowska A, Skopinska J, Wisniewski M. Photochemical stability of collagen/poly (vinyl alcohol) blends. Polym degrad stab 2004;83:117–125.

    Article  CAS  Google Scholar 

  43. Mansur HS, Sadahira CM, Souza AN, Mansur AA. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 2008;28:539–548.

    Article  CAS  Google Scholar 

  44. Miya M, Iwamoto R, Mima S. FT-IR study of intermolecular interactions in polymer blends. J Polym Sci Polym Phys Ed 1984;22:1149–1151.

    Article  CAS  Google Scholar 

  45. Lee YM, Kim SH, Kim SJ. Preparation and characteristics of ß-chitin and poly(vinyl alcohol) blend. Polymer 1996;37:5897–5905.

    Article  Google Scholar 

  46. Shanmugasundaram N, Ravichandran P, Reddy PN, Ramamurty N, Pal S, Rao KP. Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials 2001;22:1943–1951.

    Article  CAS  PubMed  Google Scholar 

  47. Don TM, King CF, Chiu WY, Peng CA. Preparation and characterization of chitosan-g-poly (vinyl alcohol)/poly (vinyl alcohol) blends used for the evaluation of blood-contacting compatibility. Carbohydr Polym 2006;63:331–339.

    Article  CAS  Google Scholar 

  48. Wang T, Turhan M, Gunasekaran S. Selected properties of pH-sensitive, biodegradable chitosan-poly(vinyl alcohol) hydrogel. Polymer Int 2004;53:911–918.

    Article  CAS  Google Scholar 

  49. Oh SH, Kang SG, Kim ES, Cho SH, Lee JH. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 2003;24:4011–4021.

    Article  CAS  PubMed  Google Scholar 

  50. Tamada Y, Ikada Y. Fibroblast growth on polymer surfaces and biosynthesis of collagen. J Biomed Mater Res 1994;28:783–789.

    Article  CAS  PubMed  Google Scholar 

  51. Vogler EA. Water and the acute biological response to surfaces. J Biomater Sci Polym Ed 1999;10:1015–1045.

    Article  CAS  PubMed  Google Scholar 

  52. Saltzman MW. Cell interactions with polymers. In:Lanza R, Langer R, Chick W, editors. Principles of Tissue Engineering. New York:R. G. Landes Company;1997. p.225–246.

    Google Scholar 

  53. Srinivasa PC, Ramesh MN, Kumar KR, Tharanathan RN. Properties and sorption studies of chitosan-polyvinyl alcohol blend films. Carbohydr Polymer 2003;53:431–438.

    Article  CAS  Google Scholar 

  54. Zhang ZY, Teoh SH, Hui JH, Fisk NM, Choolani M, Chan JK. The potential of human fetal mesenchymal stem cells for off-the-shelf bone tissue engineering application. Biomaterials 2012;33:2656–2672.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Pramanik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, P., Pramanik, K. Chitosan-poly(vinyl alcohol) nanofibers by free surface electrospinning for tissue engineering applications. Tissue Eng Regen Med 13, 485–497 (2016). https://doi.org/10.1007/s13770-016-9092-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-9092-3

Key Words

Navigation