Skip to main content
Log in

In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Polycaprolactone (PCL) is a widely accepted synthetic biodegradable polymer for tissue engineering, however its use in hard tissue engineering is limited because of its inadequate mechanical strength and low bioactivity. In this study, we used halloysite nanoclay (NC) as an inorganic filler material to prepare PCL/NC fibrous scaffolds via electrospinning technique after intercalating NC within PCL by solution intercalation method. The obtained nanofibrous mat was found to be mechanically superior to PCL fibrous scaffolds. These scaffolds allowed greater protein adsorption and enhanced mineralization when incubated in simulated body fluid. Moreover, our results indicated that human mesenchymal stem cells (hMSCs) seeded on these scaffolds were viable and could proliferate faster than in PCL scaffolds as confirmed by fluorescence and scanning electron microscopic observations. Further, osteogenic differentiation of hMSCs on nanoclay embedded scaffolds was demonstrated by an increase in alkaline phosphatase activity when compared to PCL scaffold without nanoclay. All of these results suggest the potential of PCL/NC scaffolds for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001;55:141–50.

    Article  CAS  Google Scholar 

  2. Meijer GJ, de Bruijn JD, Koole R, van Blitterswijk CA. Cell-based bone tissue engineering. PLoS Med. 2007;4:0260–4.

    Article  Google Scholar 

  3. Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotech Prog. 2009;25:1539–60.

    CAS  Google Scholar 

  4. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  Google Scholar 

  5. Yang KK, Wang XL, Wang YZ. Progress in nanocomposite of biodegradable polymer. J Ind Eng Chem. 2007;13:485–500.

    CAS  Google Scholar 

  6. Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 2003;22:81–91.

    Article  CAS  Google Scholar 

  7. Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Comp Sci Tech. 2005;65:2385–406.

    Article  CAS  Google Scholar 

  8. Chrissafis K, Antoniadis G, Paraskevopoulos KM, Vassiliou A, Bikiaris DN. Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(e-caprolactone) nanocomposites. Comp Sci Tech. 2007;67:2165–74.

    Article  CAS  Google Scholar 

  9. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5:1–16.

    CAS  Google Scholar 

  10. Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Polym Sci. 2010;35:403–40.

    Article  CAS  Google Scholar 

  11. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composites for bone tissue engineering. Biomaterials. 2006;27:3413–31.

    Article  CAS  Google Scholar 

  12. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Deg Stab. 2010;95:2126–46.

    Article  CAS  Google Scholar 

  13. Kiersnowski A, Pigłowski J. Polymer-layered silicate nanocomposites based on poly(e-caprolactone). Eur Polym J. 2004;40:1199–207.

    Article  CAS  Google Scholar 

  14. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng. 2000;28:1–63.

    Article  Google Scholar 

  15. Paluszkiewicz C, Stodolak-Zych E, Kwiatek W, Jelen P. Bioactivity of a chitosan based nanocomposite. J Biomim Biomater Tissue Eng. 2011;10:95–106.

    Article  CAS  Google Scholar 

  16. Handge UA, Hedicke-Hochstotter K, Altstadt V. Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: influence of molecular weight on thermal, mechanical and rheological properties. Polymer. 2010;51:2690–9.

    Article  CAS  Google Scholar 

  17. Luduena LN, Alvarez VA, Vazquez A. Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A. 2007;460–461:121–9.

    Google Scholar 

  18. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B. Halloysite clay minerals: a review. Clay Miner. 2005;40:383–426.

    Article  CAS  Google Scholar 

  19. Schwarz K, Milne DB. Growth-promoting effects of silicon in rats. Nature. 1972;239:333–4.

    Article  CAS  Google Scholar 

  20. Valerio P, Pereira MM, Goes AM, Leite MF. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials. 2004;25:2941–8.

    Article  CAS  Google Scholar 

  21. Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules. 2010;11:820–6.

    Article  CAS  Google Scholar 

  22. Vergaro V, Abdullayev E, Zeitoun A, Giovinazzo G, Santino A, Cingolani R, Lvov YM, Leporatti S. Halloysite clay nanotubes: characterization, biocompatibility and use as drug carriers. Nanotech. 2010;3:395–6.

    CAS  Google Scholar 

  23. Zhou WY, Guo B, Liu M, Liao R, Rabie ABM, Jia D. Poly(vinyl alcohol)/halloysite nanotubes bionanocomposite films: properties and in vitro osteoblasts and fibroblasts response. J Biomed Mater Res A. 2010;93:1574–87.

    Google Scholar 

  24. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp Sci Tech. 2003;63:2223–53.

    Article  CAS  Google Scholar 

  25. Smith LA, Ma PX. Nano-fibrous scaffolds for tissue engineering. Colloids Surf B. 2004;39:125–31.

    Article  CAS  Google Scholar 

  26. Bhattacharyya S, Kumbar SG, Khan YM, Nair LS, Singh A, Krogman NR, Brown PW, Allcock HR, Laurencin CT. Biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers: scaffolds for bone tissue engineering. J Biomed Nanotech. 2009;5:69–75.

    Article  CAS  Google Scholar 

  27. Binulal NS, Menon D, Nagarajan S, Shalumon KT, Stephen S, Mony U, Rangasamy J, Nair S. Role of nano-fibrous poly(caprolactone) scaffolds on human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering-response to osteogenic regulators. Tissue Eng A. 2009;16:393–404.

    Article  Google Scholar 

  28. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  29. Singh NK, Das Purkayastha B, Roy JK, Banik RM, Yashpal M, Singh G, Malik S, Maiti P. Nanoparticle-induced controlled biodegradation and its mechanism in poly(epsilon-caprolactone). ACS Appl Mater Interface. 2010;2:69–81.

    Article  CAS  Google Scholar 

  30. Zhang Y, Venugopal JR, El-Turki A. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008;29:4314–22.

    Article  CAS  Google Scholar 

  31. Park K, Ju YM, Son JS. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. J Biomater Sci Polym Ed. 2007;18:369–82.

    Article  CAS  Google Scholar 

  32. van Aalst JA, Reed CR, Han L, Andrady T, Hromadka M, Bernacki S, Kolapppa K, Collins JB, Loboa EG. Cellular incorporation into electrospun nanofibers: retained viability, proliferation, and function in fibroblasts. Ann Plast Surg. 2008;60:577–83.

    Article  Google Scholar 

  33. Kumbar SG, James R, Nukavarapu SP, Laurencin CT. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater. 2008;3:034002.

    Article  CAS  Google Scholar 

  34. Murugan R, Ramakrishna S. Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng. 2006;12:435–47.

    Article  CAS  Google Scholar 

  35. McFarland CD, Thomas CH, DeFilippis C, Steele JG, Healy KE. Protein adsorption and cell attachment to patterned surfaces. J Biomed Mater Res. 2000;49:200–10.

    Article  CAS  Google Scholar 

  36. Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res. 2003;67:531–7.

    Article  Google Scholar 

  37. Ying PQ, Yu Y, Jin G, Tao ZL. Competitive protein adsorption studied with atomic force microscopy and imaging ellipsometry. Colloids Surf Biointerfaces. 2003;32:1–10.

    Article  CAS  Google Scholar 

  38. Saranya N, Saravanan S, Moorthi A, Ramyakrishna B, Selvamurugan N. Enhanced osteoblast adhesion on polymeric nano-scaffolds for bone tissue engineering. J Biomed Nanotech. 2011;7:238–44.

    Article  CAS  Google Scholar 

  39. Kokubo T. Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater. 1998;46:2519–27.

    Article  CAS  Google Scholar 

  40. Arien-Zakay H, Lazarovici P, Nagler A. Tissue regeneration potential in human umbilical cord blood. Best Pract Res Clin Haematol. 2010;23:291–303.

    Article  Google Scholar 

  41. Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N. Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci. 2007;53:25–35.

    CAS  Google Scholar 

  42. Vallet-Regí M, Colilla M, Izquierdo-Barba I. Bioactive mesoporous silicas as controlled delivery systems: application in bone tissue regeneration. J Biomed Nanotech. 2008;4:1–15.

    Google Scholar 

Download references

Acknowledgments

The work done in this paper was funded by a research grant named Centre for Nanotechnology of the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krishna Prasad Chennazhi or Shantikumar V. Nair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nitya, G., Nair, G.T., Mony, U. et al. In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J Mater Sci: Mater Med 23, 1749–1761 (2012). https://doi.org/10.1007/s10856-012-4647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4647-x

Keywords

Navigation