Skip to main content
Log in

Insight into microenvironment remodeling in pancreatic endocrine tissue engineering: Biological and biomaterial approaches

  • Review Article
  • Tissue Engineering
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

The treatment of diabetes mellitus, as a chronic and complicated disease, is a valuable purpose. Islet transplantation can provide metabolic stability and insulin independence in type 1 diabetes patients. Diet and insulin therapy are only diabetes controllers and cannot remove all of the diabetes complications. Moreover, islet transplantation is more promising treatment than whole pancreas transplantation because of lesser invasive surgical procedure and morbidity and mortality. According to the importance of extracellular matrix for islet viability and function, microenvironment remodeling of pancreatic endocrine tissue can lead to more success in diabetes treatment by pancreatic islets. Production of bioengineered pancreas and remodeling of pancreas extracellular matrix provide essential microenvironment for re-vascularization, re-innervation and signaling cascades triggering. Therefore, islets show better viability and function in these conditions. Researchers conduct various scaffolds with different biomaterials for the improvement of islet viability, function and transplantation outcome. The attention to normal pancreas anatomy, embryology and histology is critical to understand the pancreatic Langerhans islets niche and finally to achieve efficient engineered structure. Therefore, in the present study, the status and components of the islets niche is mentioned and fundamental issues related to the tissue engineering of this structure is considered. The purpose of this review article is summarization of recent progress in the endocrine pancreas tissue engineering and biomaterials and biological aspects of it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuehl M, Stevens MJ. Cardiovascular autonomic neuropathies as complications of diabetes mellitus. Nat Rev Endocrinol 2012;8:405–416.

    Article  CAS  PubMed  Google Scholar 

  2. Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol 2012;32:2052–2059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013;93:137–188.

    Article  CAS  PubMed  Google Scholar 

  4. Narang AS, Mahato RI. Biological and biomaterial approaches for improved islet transplantation. Pharmacol Rev 2006;58:194–243.

    Article  CAS  PubMed  Google Scholar 

  5. Kelly WD, Lillehei RC, Merkel FK, Idezuki Y, Goetz FC. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery 1967;61:827–837.

    CAS  PubMed  Google Scholar 

  6. Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B, et al. Improvement in outcomes of clinical islet transplantation:1999-2010. Diabetes Care 2012;35:1436–1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berney T, Johnson PR. Donor pancreata:evolving approaches to organ allocation for whole pancreas versus islet transplantation. Transplantation 2010;90:238–243.

    Article  PubMed  Google Scholar 

  8. Ballinger WF, Lacy PE. Transplantation of intact pancreatic islets in rats. Surgery 1972;72:175–186.

    CAS  PubMed  Google Scholar 

  9. Gray BN, Watkins E Jr. Prevention of vascular complications of diabetes by pancreatic islet transplantation. Arch Surg 1976;111:254–257.

    Article  CAS  PubMed  Google Scholar 

  10. O’Connell PJ, Hawthorne WJ, Holmes-Walker DJ, Nankivell BJ, Gunton JE, Patel AT, et al. Clinical islet transplantation in type 1 diabetes mellitus:results of Australia’s first trial. Med J Aus 2006;184:221–225.

    Google Scholar 

  11. Vantyghem MC, Kerr-Conte J, Arnalsteen L, Sergent G, Defrance F, Gmyr V, et al. Primary graft function, metabolic control, and graft survival after islet transplantation. Diabetes Care 2009;32:1473–1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Connell PJ, Holmes-Walker DJ, Goodman D, Hawthorne WJ, Loudovaris T, Gunton JE, et al. Multicenter Australian trial of islet transplantation:improving accessibility and outcomes. Am J Transplant 2013;13:1850–1858.

    Article  PubMed  Google Scholar 

  13. D’Addio F, Maffi P, Vezzulli P, Vergani A, Mello A, Bassi R, et al. Islet transplantation stabilizes hemostatic abnormalities and cerebral metabolism in individuals with type 1 diabetes. Diabetes Care 2014;37:267–276.

    Article  PubMed  CAS  Google Scholar 

  14. Biarnés M, Montolio M, Nacher V, Raurell M, Soler J, Montanya E. Beta-cell death and mass in syngeneically transplanted islets exposed to short-and long-term hyperglycemia. Diabetes 2002;51:66–72.

    Article  PubMed  Google Scholar 

  15. Ricordi C, Strom TB. Clinical islet transplantation:advances and immunological challenges. Nat Rev Immunol 2004;4:259–268.

    Article  CAS  PubMed  Google Scholar 

  16. Campbell PM, Senior PA, Salam A, Labranche K, Bigam DL, Kneteman NM, et al. High risk of sensitization after failed islet transplantation. Am J Transplant 2007;7:2311–2317.

    Article  CAS  PubMed  Google Scholar 

  17. Azarpira N, Aghdai MH, Nikeghbalian S, Geramizadeh B, Darai M, Esfandiari E, et al. Human islet cell isolation:the initial step in an islet transplanting program in Shiraz, Southern Iran. Exp Clin Transplant 2014;12:139–142.

    PubMed  Google Scholar 

  18. Bucher P, Mathe Z, Morel P, Bosco D, Andres A, Kurfuest M, et al. Assessment of a novel two-component enzyme preparation for human islet isolation and transplantation. Transplantation 2005;79:91–97.

    Article  PubMed  Google Scholar 

  19. Ricordi C, Tzakis AG, Carroll PB, Zeng YJ, Rilo HL, Alejandro R, et al. Human islet isolation and allotransplantation in 22 consecutive cases. Transplantation 1992;53:407–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ilieva A, Yuan S, Wang RN, Agapitos D, Hill DJ, Rosenberg L. Pancreatic islet cell survival following islet isolation:the role of cellular interactions in the pancreas. J Endocrinol 1999;161:357–364.

    Article  CAS  PubMed  Google Scholar 

  21. Wang RN, Rosenberg L. Maintenance of beta-cell function and survival following islet isolation requires re-establishment of the islet-matrix relationship. J Endocrinol 1999;163:181–190.

    Article  CAS  PubMed  Google Scholar 

  22. Daoud J, Petropavlovskaia M, Rosenberg L, Tabrizian M. The effect of extracellular matrix components on the preservation of human islet function in vitro. Biomaterials 2010;31:1676–1682.

    Article  CAS  PubMed  Google Scholar 

  23. Gao B, Wang L, Han S, Pingguan-Murphy B, Zhang X, Xu F. Engineering of microscale three-dimensional pancreatic islet models in vitro and their biomedical applications. Crit Rev Biotechnol 2016;36:619–629.

    CAS  PubMed  Google Scholar 

  24. Riopel M, Trinder M, Wang R. Fibrin, a scaffold material for islet transplantation and pancreatic endocrine tissue engineering. Tissue Eng Part B Rev 2015;21:34–44.

    Article  CAS  PubMed  Google Scholar 

  25. Hamilton DC, Shih HH, Schubert RA, Michie SA, Staats PN, Kaplan DL, et al. A silk-based encapsulation platform for pancreatic islet transplantation improves islet function in vivo. J Tissue Eng Regen Med, 2015. doi:10.1002/term.1990 [Epub ahead of print].

    Google Scholar 

  26. Drake R, Vogl AW, Mitchell A. Gray’s anatomy for students. 3rd ed. New York:Churchill Livingstone;2014.

    Google Scholar 

  27. Go VLW, Dimagno EP, Gardner JD, Lebenthal E, Reber HA, Scheele GA. The pancreas, biology, pathobiology, and disease. 2nd ed. New York:Raven Press;1993.

    Google Scholar 

  28. In’t Veld P, Marichal M. Microscopic Anatomy of the Human Islet of Langerhans. In:Islam S, editor. The Islets of Langerhans:Volume 654 of the series Advances in Experimental Medicine and Biology. Netherlands:Springer;2010. p. 1–19.

    Chapter  Google Scholar 

  29. Bouwens L, Pipeleers DG. Extra-insular beta cells associated with ductules are frequent in adult human pancreas. Diabetologia 1998;41:629–633.

    Article  CAS  PubMed  Google Scholar 

  30. Andralojc KM, Mercalli A, Nowak KW, Albarello L, Calcagno R, Luzi L, et al. Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia 2009;52:486–493.

    Article  CAS  PubMed  Google Scholar 

  31. Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 2005;53:1087–1097.

    Article  CAS  PubMed  Google Scholar 

  32. DolenŠek J, Rupnik MS, Stožer A. Structural similarities and differences between the human and the mouse pancreas. Islets 2015;7:e1024405.

    Article  PubMed  PubMed Central  Google Scholar 

  33. O’Morchoe CC. Lymphatic system of the pancreas. Microsc Res Tech 1997;37:456–477.

    Article  PubMed  Google Scholar 

  34. Henderson JR, Moss MC. A morphometric study of the endocrine and exocrine capillaries of the pancreas. Q J Exp Physiol 1985;70:347–356.

    Article  CAS  PubMed  Google Scholar 

  35. Konstantinova I, Lammert E. Microvascular development:learning from pancreatic islets. Bioessays 2004;26:1069–1075.

    Article  CAS  PubMed  Google Scholar 

  36. El-Gohary Y, Sims-Lucas S, Lath N, Tulachan S, Guo P, Xiao X, et al. Three-dimensional analysis of the islet vasculature. Anat Rec (Hoboken) 2012;295:1473–1481.

    Article  CAS  Google Scholar 

  37. Ahrén B. Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia 2000;43:393–410.

    Article  PubMed  Google Scholar 

  38. Carroll PB. Anatomy and physiology of islets of Langerhans. In:Ricordi C, editor. Pancreatic islet cell transplantation;1892-1992 one century of transplantation for diabetes. Austin, TX:R. G. Landes Co.;1992. p. 7–18.

    Google Scholar 

  39. Otonkoski T, Banerjee M, Korsgren O, Thornell LE, Virtanen I. Unique basement membrane structure of human pancreatic islets:implications for beta-cell growth and differentiation. Diabetes Obes Metab 2008;10 Suppl 4:119–127.

    Article  PubMed  Google Scholar 

  40. Van Deijnen JH, Van Suylichem PT, Wolters GH, Van Schilfgaarde R. Distribution of collagens type I, type III and type V in the pancreas of rat, dog, pig and man. Cell Tissue Res 1994;277:115–121.

    Article  PubMed  Google Scholar 

  41. Stendahl JC, Kaufman DB, Stupp SI. Extracellular matrix in pancreatic islets:relevance to scaffold design and transplantation. Cell Transplant 2009;18:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cirulli V, Beattie GM, Klier G, Ellisman M, Ricordi C, Quaranta V, et al. Expression and function of alpha(v)beta(3) and alpha(v)beta(5) integrins in the developing pancreas:roles in the adhesion and migration of putative endocrine progenitor cells. J Cell Biol 2000;150:1445–1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heino J. Cellular signaling by collagen-binding integrins. In:Gullberg D, editor. I Domain Integrins. New York:Springer;2014.

    Google Scholar 

  44. Kaido T, Yebra M, Cirulli V, Montgomery AM. Regulation of human beta-cell adhesion, motility, and insulin secretion by collagen IV and its receptor alpha1beta1. J Biol Chem 2004;279:53762–53769.

    Article  CAS  PubMed  Google Scholar 

  45. Kaido T, Perez B, Yebra M, Hill J, Cirulli V, Hayek A, et al. Alphav-integrin utilization in human beta-cell adhesion, spreading, and motility. J Biol Chem 2004;279:17731–17737.

    Article  CAS  PubMed  Google Scholar 

  46. Hughes SJ, Clark A, McShane P, Contractor HH, Gray DW, Johnson PR. Characterisation of collagen VI within the islet-exocrine interface of the human pancreas:implications for clinical islet isolation? Transplantation 2006;81:423–426.

    Article  CAS  PubMed  Google Scholar 

  47. Jiang FX, Naselli G, Harrison LC. Distinct distribution of laminin and its integrin receptors in the pancreas. J Histochem Cytochem 2002;50:1625–1632.

    Article  CAS  PubMed  Google Scholar 

  48. Jiang FX, Cram DS, De Aizpurua HJ, Harrison LC. Laminin-1 promotes differentiation of fetal mouse pancreatic beta-cells. Diabetes 1999;48:722–730.

    Article  CAS  PubMed  Google Scholar 

  49. Banerjee M, Virtanen I, Palgi J, Korsgren O, Otonkoski T. Proliferation and plasticity of human beta cells on physiologically occurring laminin isoforms. Mol Cell Endocrinol 2012;355:78–86.

    Article  CAS  PubMed  Google Scholar 

  50. Johansson S, Svineng G, Wennerberg K, Armulik A, Lohikangas L. Fibronectin-integrin interactions. Front Biosci 1997;2:d126–d146.

    Article  CAS  PubMed  Google Scholar 

  51. Britland S, Perridge C, Denyer M, Morgan H, Curtis A, Wilkinson C. Morphogenetic guidance cues can interact synergistically and hierarchically in steering nerve cell growth. In:Bridges CR, Sanders D, Curtis A, editors. EBO-Experimental Biology Online Annual 1996/97. Vol. 1996/1997. Heidelberg:Springer;1998. p. 15–34.

    Chapter  Google Scholar 

  52. Larsen M, Artym VV, Green JA, Yamada KM. The matrix reorganized:extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol 2006;18:463–471.

    Article  CAS  PubMed  Google Scholar 

  53. Ris F, Hammar E, Bosco D, Pilloud C, Maedler K, Donath MY, et al. Impact of integrin-matrix matching and inhibition of apoptosis on the survival of purified human beta-cells in vitro. Diabetologia 2002;45:841–850.

    Article  CAS  PubMed  Google Scholar 

  54. Wang RN, Paraskevas S, Rosenberg L. Characterization of integrin expression in islets isolated from hamster, canine, porcine, and human pancreas. J Histochem Cytochem 1999;47:499–506.

    Article  CAS  PubMed  Google Scholar 

  55. Nekoei SM, Azarpira N, Sadeghi L, Kamalifar S. In vitro differentiation of human umbilical cord Wharton’s jelly mesenchymal stromal cells to insulin producing clusters. World J Clin Cases 2015;3:640–649.

    PubMed  PubMed Central  Google Scholar 

  56. Shaer A, Azarpira N, Karimi MH. Differentiation of human induced pluripotent stem cells into insulin-like cell clusters with miR-186 and miR-375 by using chemical transfection. Appl Biochem Biotechnol 2014;174:242–258.

    Article  CAS  PubMed  Google Scholar 

  57. Shaer A, Azarpira N, Vahdati A, Karimi MH, Shariati M. miR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells. Cell Mol Biol Lett 2014;19:483–499.

    Article  CAS  PubMed  Google Scholar 

  58. Karnieli O, Izhar-Prato Y, Bulvik S, Efrat S. Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 2007;25:2837–2844.

    Article  CAS  PubMed  Google Scholar 

  59. Bosco D, Meda P, Halban PA, Rouiller DG. Importance of cell-matrix interactions in rat islet beta-cell secretion in vitro:role of alpha6beta1 integrin. Diabetes 2000;49:233–243.

    Article  CAS  PubMed  Google Scholar 

  60. Wang X, Ye K. Three-dimensional differentiation of embryonic stem cells into islet-like insulin-producing clusters. Tissue Eng Part A 2009;15:1941–1952.

    Article  CAS  PubMed  Google Scholar 

  61. O’brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today 2011;14:88–95.

    Article  CAS  Google Scholar 

  62. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology:designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 2007;59:1413–1433.

    Article  CAS  PubMed  Google Scholar 

  63. Daoud JT, Petropavlovskaia MS, Patapas JM, Degrandpré CE, Diraddo RW, Rosenberg L, et al. Long-term in vitro human pancreatic islet culture using three-dimensional microfabricated scaffolds. Biomaterials 2011;32:1536–1542.

    Article  CAS  PubMed  Google Scholar 

  64. Pawar SN, Edgar KJ. Alginate derivatization:a review of chemistry, properties and applications. Biomaterials 2012;33:3279–3305.

    Article  CAS  PubMed  Google Scholar 

  65. Sandler S, Andersson A, Eizirik DL, Hellerström C, Espevik T, Kulseng B, et al. Assessment of insulin secretion in vitro from microencapsulated fetal porcine islet-like cell clusters and rat, mouse, and human pancreatic islets. Transplantation 1997;63:1712–1718.

    Article  CAS  PubMed  Google Scholar 

  66. de Vos P, Faas MM, Strand B, Calafiore R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 2006;27:5603–5617.

    Article  PubMed  CAS  Google Scholar 

  67. Ha TLB, Quan TM, Vu D, et al. Naturally derived biomaterials:Preparation and application. In:Andrades JA, editor. Regenerative Medicine and Tissue Engineering. Croatia:InTech, Chapters Published;2013. p. 247–274.

    Google Scholar 

  68. Lamb M, Storrs R, Li S, Liang O, Laugenour K, Dorian R, et al. Function and viability of human islets encapsulated in alginate sheets:in vitro and in vivo culture. Transplant Proc 2011;43:3265–3266.

    Article  CAS  PubMed  Google Scholar 

  69. Qi M, Strand BL, Mørch Y, Lacík I, Wang Y, Salehi P, et al. Encapsulation of human islets in novel inhomogeneous alginate-ca2+/ba2+ microbeads:in vitro and in vivo function. Artif Cells Blood Substit Immobil Biotechnol 2008;36:403–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Köllmer M, Appel AA, Somo SI, Brey EM. Long-term function of alginate-encapsulated islets. Tissue Eng Part B Rev 2015 [Epub ahead of print].

    Google Scholar 

  71. Prasitsilp M, Jenwithisuk R, Kongsuwan K, Damrongchai N, Watts P. Cellular responses to chitosan in vitro:the importance of deacetylation. J Mater Sci Mater Med 2000;11:773–778.

    Article  CAS  PubMed  Google Scholar 

  72. Dutta PK, Dutta J, Tripathi V. Chitin and chitosan:chemistry, properties and applications. J Sci Ind Res 2004;63:20–31.

    CAS  Google Scholar 

  73. McBane JE, Vulesevic B, Padavan DT, McEwan KA, Korbutt GS, Suuronen EJ. Evaluation of a collagen-chitosan hydrogel for potential use as a pro-angiogenic site for islet transplantation. PLoS One 2013;8:e77538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang KC, Qi Z, Wu CC, Shirouza Y, Lin FH, Yanai G, et al. The cytoprotection of chitosan based hydrogels in xenogeneic islet transplantation:an in vivo study in streptozotocin-induced diabetic mouse. Biochem Biophys Res Commun 2010;393:818–823.

    Article  CAS  PubMed  Google Scholar 

  75. Bennet W, Sundberg B, Groth CG, Brendel MD, Brandhorst D, Brandhorst H, et al. Incompatibility between human blood and isolated islets of Langerhans:a finding with implications for clinical intraportal islet transplantation? Diabetes 1999;48:1907–1914.

    Article  CAS  PubMed  Google Scholar 

  76. Rak J, Weitz JI. Heparin and angiogenesis:size matters! Arterioscler Thromb Vasc Biol 2003;23:1954–1955.

    Article  CAS  PubMed  Google Scholar 

  77. Chow LW, Wang LJ, Kaufman DB, Stupp SI. Self-assembling nanostructures to deliver angiogenic factors to pancreatic islets. Biomaterials 2010;31:6154–6161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bennet W, Sundberg B, Lundgren T, Tibell A, Groth CG, Richards A, et al. Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after intraportal transplantation to cynomologus monkeys:protective effects of sCR1 and heparin. Transplantation 2000;69:711–719.

    Article  CAS  PubMed  Google Scholar 

  79. Freudenberg U, Hermann A, Welzel PB, Stirl K, Schwarz SC, Grimmer M, et al. A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 2009;30:5049–5060.

    Article  CAS  PubMed  Google Scholar 

  80. Borg DJ, Bonifacio E. The use of biomaterials in islet transplantation. Curr Diab Rep 2011;11:434–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wolfe PS, Sell SA, Bowlin GL. Natural and Synthetic Scaffolds. In:Pallua N, Suscheck CV, editors. In Tissue Engineering:From lab to Clinic. Berilin:Springer-Verlag;2011. p. 41–67.

    Chapter  Google Scholar 

  82. Chun S, Huang Y, Xie WJ, Hou Y, Huang RP, Song YM, et al. Adhesive growth of pancreatic islet cells on a polyglycolic acid fibrous scaffold. Transplant Proc 2008;40:1658–1663.

    Article  CAS  PubMed  Google Scholar 

  83. Hou Y, Song C, Xie WJ, Wei Z, Huang RP, Liu W, et al. Excellent effect of three-dimensional culture condition on pancreatic islets. Diabetes Res Clin Pract 2009;86:11–15.

    Article  CAS  PubMed  Google Scholar 

  84. Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Del Rev 2012;64:72–82.

    Article  Google Scholar 

  85. Park TG. Degradation of poly(lactic-co-glycolic acid) microspheres:effect of copolymer composition. Biomaterials 1995;16:1123–1130.

    Article  CAS  PubMed  Google Scholar 

  86. Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996;17:93–102.

    Article  CAS  PubMed  Google Scholar 

  87. Gibly RF, Zhang X, Graham ML, Hering BJ, Kaufman DB, Lowe WL Jr, et al. Extrahepatic islet transplantation with microporous polymer scaffolds in syngeneic mouse and allogeneic porcine models. Biomaterials 2011;32:9677–9684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980;210:908–910.

    Article  CAS  PubMed  Google Scholar 

  89. Vériter S, Gianello P, Dufrane D. Bioengineered sites for islet cell transplantation. Curr Diab Rep 2013;13:745–755.

    Article  PubMed  CAS  Google Scholar 

  90. Kozlovskaya V, Kharlampieva E, Zavgorodnya O. Encapsulation and surface engineering of pancreatic islets:advances and challenges. In:Lin C, editor. Biomedicine. Croatia: InTech, Chapters Published;2012.

    Google Scholar 

  91. Yang HK, Yoon KH. Current status of encapsulated islet transplantation. J Diabetes Complications 2015;29:737–743.

    Article  PubMed  Google Scholar 

  92. Schrezenmeir J, Kirchgessner J, Gerö L, Kunz LA, Beyer J, Mueller-Klieser W. Effect of microencapsulation on oxygen distribution in islets organs. Transplantation 1994;57:1308–1314.

    Article  CAS  PubMed  Google Scholar 

  93. Beck J, Angus R, Madsen B, Britt D, Vernon B, Nguyen KT. Islet encapsulation:strategies to enhance islet cell functions. Tissue Eng 2007;13:589–599.

    Article  CAS  PubMed  Google Scholar 

  94. Vaithilingam V, Quayum N, Joglekar MV, Jensen J, Hardikar AA, Oberholzer J, et al. Effect of alginate encapsulation on the cellular transcriptome of human islets. Biomaterials 2011;32:8416–8425.

    Article  CAS  PubMed  Google Scholar 

  95. Montanucci P, Pennoni I, Pescara T, Blasi P, Bistoni G, Basta G, et al. The functional performance of microencapsulated human pancreatic islet-derived precursor cells. Biomaterials 2011;32:9254–9262.

    Article  CAS  PubMed  Google Scholar 

  96. Roshanbinfar K, Salahshour Kordestani S. Encapsulating beta islet cells in alginate, alginate-chitosan and alginate-chitosan-PEG microcapsules and investigation of insulin secretion. J Biomater Tissue Eng 2013;3:185–189.

    Article  CAS  Google Scholar 

  97. Jun Y, Kang AR, Lee JS, Park SJ, Lee DY, Moon SH, et al. Microchip-based engineering of super-pancreatic islets supported by adipose-derived stem cells. Biomaterials 2014;35:4815–4826.

    Article  CAS  PubMed  Google Scholar 

  98. Basta G, Montanucci P, Luca G, Boselli C, Noya G, Barbaro B, et al. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts:four cases. Diabetes Care 2011;34:2406–2409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Calafiore R, Basta G, Luca G, Lemmi A, Montanucci MP, Calabrese G, et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes:first two cases. Diabetes Care 2006;29:137–138.

    Article  PubMed  Google Scholar 

  100. Elliott RB. Transplantation of microencapsulated neonatal porcine islets in patients with type 1 diabetes:safety and efficacy. 70th Scientific Sessions. Alexandria: American Diabetes Association;2010. Abtract.

    Google Scholar 

  101. Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 2007;14:157–161.

    Article  PubMed  Google Scholar 

  102. Prochorov AV, Tretjak SI, Goranov VA, Glinnik AA, Goltsev MV. Treatment of insulin dependent diabetes mellitus with intravascular transplantation of pancreatic islet cells without immunosuppressive therapy. Adv Med Sci 2008;53:240–244.

    Article  CAS  PubMed  Google Scholar 

  103. Tuch BE, Keogh GW, Williams LJ, Wu W, Foster JL, Vaithilingam V, et al. Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 2009;32:1887–1889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Valdés-González RA, Dorantes LM, Garibay GN, Bracho-Blanchet E, Mendez AJ, Dávila-Pérez R, et al. Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells:a 4-year study. Eur J Endocrinol 2005;153:419–427.

    Article  PubMed  CAS  Google Scholar 

  105. Maillard E, Juszczak MT, Clark A, Hughes SJ, Gray DR, Johnson PR. Perfluorodecalin-enriched fibrin matrix for human islet culture. Biomaterials 2011;32:9282–9289.

    Article  CAS  PubMed  Google Scholar 

  106. Bhang SH, Jung MJ, Shin JY, La WG, Hwang YH, Kim MJ, et al. Mutual effect of subcutaneously transplanted human adipose-derived stem cells and pancreatic islets within fibrin gel. Biomaterials 2013;34:7247–7256.

    Article  CAS  PubMed  Google Scholar 

  107. Buitinga M, Truckenmüller R, Engelse MA, Moroni L, Ten Hoopen HW, van Blitterswijk CA, et al. Microwell scaffolds for the extrahepatic transplantation of islets of Langerhans. PLoS One 2013;8:e64772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Uzunalli G, Tumtas Y, Delibasi T, Yasa O, Mercan S, Guler MO, et al. Improving pancreatic islet in vitro functionality and transplantation efficiency by using heparin mimetic peptide nanofiber gels. Acta Biomater 2015;22:8–18.

    Article  CAS  PubMed  Google Scholar 

  109. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med 2011;17:424–432.

    Article  CAS  PubMed  Google Scholar 

  110. Conrad C, Schuetz C, Clippinger B, Vacanti JP, Markmann JF, Ott HC. Bio-engineered endocrine pancreas based on decellularized pancreatic matrix and mesenchymal stem cell/islet cell coculture. J Am Coll Surg 2010;211:S62.

    Article  Google Scholar 

  111. Mirmalek-Sani SH, Orlando G, McQuilling JP, Pareta R, Mack DL, Salvatori M, et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials 2013;34:5488–5495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Goh SK, Bertera S, Olsen P, Candiello JE, Halfter W, Uechi G, et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials 2013;34:6760–6772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negar Azarpira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaviani, M., Azarpira, N. Insight into microenvironment remodeling in pancreatic endocrine tissue engineering: Biological and biomaterial approaches. Tissue Eng Regen Med 13, 475–484 (2016). https://doi.org/10.1007/s13770-016-0014-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-0014-1

Key Words

Navigation