Skip to main content
Log in

In vitro co-culture strategies to prevascularization for bone regeneration: A brief update

  • Feature Article
  • Regenerative Medicine
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Vascularization is an important event that generates blood vessels for bone healing and regeneration processes. Vascularization of the engineered bone construct can keep the cells alive by sufficiently supplying nutrient and oxygen and delivering progenitor / stem cells and signaling molecules to the defect site. For this reason there have been extensive research efforts to develop new methodologies, which include development of scaffolds, controlled delivery of signaling molecules, and co-culture systems. Among these, the co-cultures of cells, which involve the cross-talks between vasculogenic cells and osteoprogenitor cells, have recently shown to be an effective prevascularization strategy. Here we briefly update recent key co-culture systems modeled with different culture components and the in vitro and in vivo findings of the prevascularized bone constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IH Kalfas, Principles of bone healing, Neurosurg Focus, 10, E1 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. P Carmeliet, RK Jain, Angiogenesis in cancer and other diseases, Nature, 407, 249 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. MI Santos, RL Reis, Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges, Macromol Biosci, 10, 12 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. LH Nguyen, N Annabi, M Nikkhah, et al., Vascularized bone tissue engineering: approaches for potential improvement, Tissue Eng Part B Rev, 18, 363 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. L Krishnan, NJ Willett, RE Guldberg, Vascularization strategies for bone regeneration, Ann Biomed Eng, 42, 432 (2014).

    Article  PubMed  Google Scholar 

  6. H Yu, PJ VandeVord, L Mao, et al., Improved tissueengineered bone regeneration by endothelial cell mediated vascularization, Biomaterials, 30, 508 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. NE Fedorovich, RT Haverslag, WJ Dhert, et al., The role of endothelial progenitor cells in prevascularized bone tissue engineering: development of heterogeneous constructs, Tissue Eng Part A, 16, 2355 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. J Zhou, H Lin, T Fang, et al., The repair of large segmental bone defects in the rabbit with vascularized tissue engineered bone, Biomaterials, 31, 1171 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. O Tsigkou, I Pomerantseva, JA Spencer, et al., Engineered vascularized bone grafts, Proc Natl Acad Sci U S A, 107, 3311 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. X Chen, AS Aledia, CM Ghajar, et al., Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature, Tissue Eng Part A, 15, 1363 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. M Grellier, L Bordenave, J Amedee, Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering, Trends Biotechnol, 27, 562 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. F Villars, L Bordenave, R Bareille, et al., Effect of human endothelial cells on human bone marrow stromal cell phenotype: role of VEGF?, J Cell Biochem, 79, 672 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. F Villars, B Guillotin, T Amedee, et al., Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication, Am J Physiol Cell Physiol, 282, C775 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. B Guillotin, C Bourget, M Remy-Zolgadri, et al., Human primary endothelial cells stimulate human osteoprogenitor cell differentiation, Cell Physiol Biochem, 14, 325 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. PJ Bouletreau, SM Warren, JA Spector, et al., Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing, Plast Reconstr Surg, 109, 2384 (2002).

    Article  PubMed  Google Scholar 

  16. R Tsuboi, Y Sato, DB Rifkin, Correlation of cell migration, cell invasion, receptor number, proteinase production, and basic fibroblast growth factor levels in endothelial cells, J Cell Biol, 110, 511 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. CJ Veillette, HP von Schroeder, Endothelin-1 down-regulates the expression of vascular endothelial growth factor-A associated with osteoprogenitor proliferation and differentiation, Bone, 34, 288 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. J Fiedler, C Brill, WF Blum, et al., IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells, Biochem Biophys Res Commun, 345, 1177 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. D Kaigler, Z Wang, K Horger, et al., VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects, J Bone Miner Res, 21, 735 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. CE Clarkin, RJ Emery, AA Pitsillides, et al., Evaluation of VEGF-mediated signaling in primary human cells reveals a paracrine action for VEGF in osteoblast-mediated crosstalk to endothelial cells, J Cell Physiol, 214, 537 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. CE Clarkin, E Garonna, AA Pitsillides, et al., Heterotypic contact reveals a COX-2-mediated suppression of osteoblast differentiation by endothelial cells: A negative modulatory role for prostanoids in VEGF-mediated cell: cell communication?, Exp Cell Res, 314, 3152 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. K Rezwan, QZ Chen, JJ Blaker, et al., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, 27, 3413 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. A El-Ghannam, Bone reconstruction: from bioceramics to tissue engineering, Expert Rev Med Devices, 2, 87 (2005).

    Article  PubMed  Google Scholar 

  24. T Cordonnier, J Sohier, P Rosset, et al., Biomimetic Materials for Bone Tissue Engineering–State of the Art and Future Trends, Advanced Engineering Materials, 13, B135 (2011).

    Article  CAS  Google Scholar 

  25. B Idowu, G Cama, S Deb, et al., In vitro osteoinductive potential of porous monetite for bone tissue engineering, J Tissue Eng, 5, 2041731414536572 (2014).

  26. RA Perez, K Riccardi, G Altankov, et al., Dynamic cell culture on calcium phosphate microcarriers for bone tissue engineering applications, Journal of Tissue Engineering, 5, (2014).

  27. M Kohri, K Miki, DE Waite, et al., In vitro stability of biphasic calcium phosphate ceramics, Biomaterials, 14, 299 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. P Ducheyne, Bioceramics: material characteristics versus in vivo behavior, J Biomed Mater Res, 21, 219 (1987).

    CAS  PubMed  Google Scholar 

  29. N Annabi, A Fathi, SM Mithieux, et al., The effect of elastin on chondrocyte adhesion and proliferation on poly (varepsiloncaprolactone)/elastin composites, Biomaterials, 32, 1517 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. D Lickorish, JA Ramshaw, JA Werkmeister, et al., Collagenhydroxyapatite composite prepared by biomimetic process, J Biomed Mater Res A, 68, 19 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. HW Kim, JC Knowles, HE Kim, Hydroxyapatite/poly(epsiloncaprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery, Biomaterials, 25, 1279 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Y Kang, A Scully, DA Young, et al., Enhanced mechanical performance and biological evaluation of a PLGA coated â- TCP composite scaffold for load-bearing applications, European Polymer Journal, 47, 1569 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. G Chen, T Ushida, T Tateishi, Poly(DL-lactic-co-glycolic acid) sponge hybridized with collagen microsponges and deposited apatite particulates, J Biomed Mater Res, 57, 8 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. SM Roosa, JM Kemppainen, EN Moffitt, et al., The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model, J Biomed Mater Res A, 92, 359 (2010).

    Article  PubMed  CAS  Google Scholar 

  35. P Kasten, I Beyen, P Niemeyer, et al., Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study, Acta Biomater, 4, 1904 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. TD Roy, JL Simon, JL Ricci, et al., Performance of degradable composite bone repair products made via three-dimensional fabrication techniques, J Biomed Mater Res A, 66, 283 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. MC Kruyt, JD de Bruijn, CE Wilson, et al., Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats, Tissue Eng, 9, 327 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Y Kuboki, Q Jin, H Takita, Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis, J Bone Joint Surg Am, 83-A Suppl 1, S105 (2001).

    Google Scholar 

  39. Y Takahashi, Y Tabata, Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells, J Biomater Sci Polym Ed, 15, 41 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. K Kim, A Yeatts, D Dean, et al., Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression, Tissue Eng Part B Rev, 16, 523 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. S Yang, KF Leong, Z Du, et al., The design of scaffolds for use in tissue engineering. Part I. Traditional factors, Tissue Eng, 7, 679 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. V Karageorgiou, D Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, 26, 5474 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. L Uebersax, H Hagenmuller, S Hofmann, et al., Effect of scaffold design on bone morphology in vitro, Tissue Eng, 12, 3417 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. DJ Mooney, DF Baldwin, NP Suh, et al., Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents, Biomaterials, 17, 1417 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. YS Nam, TG Park, Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation, J Biomed Mater Res, 47, 8 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. K Whang, TK Goldstick, KE Healy, A biodegradable polymer scaffold for delivery of osteotropic factors, Biomaterials, 21, 2545 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. MB Claase, DW Grijpma, SC Mendes, et al., Porous PEOT/PBT scaffolds for bone tissue engineering: preparation, characterization, and in vitro bone marrow cell culturing, J Biomed Mater Res A, 64, 291 (2003).

    Article  PubMed  CAS  Google Scholar 

  48. J Wang, M Yang, Y Zhu, et al., Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds, Adv Mater, 26, 4961 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. JY Kim, GZ Jin, IS Park, et al., Evaluation of solid free-form fabrication-based scaffolds seeded with osteoblasts and human umbilical vein endothelial cells for use in vivo osteogenesis, Tissue Eng Part A, 16, 2229 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. NE Fedorovich, E Kuipers, D Gawlitta, et al., Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors, Tissue Eng Part A, 17, 2473 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. NE Fedorovich, J Alblas, WE Hennink, et al., Organ printing: the future of bone regeneration?, Trends Biotechnol, 29, 601 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. NA Peppas, JZ Hilt, A Khademhosseini, et al., Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology, Advanced Materials, 18, 1345 (2006).

    Article  CAS  Google Scholar 

  53. A El-Fiqi, JH Lee, EJ Lee, et al., Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering, Acta Biomater, 9, 9508 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. A Wenger, A Stahl, H Weber, et al., Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering, Tissue Eng, 10, 1536 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. J Rouwkema, J de Boer, CA Van Blitterswijk, Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct, Tissue Eng, 12, 2685 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. T Dariima, GZ Jin, EJ Lee, et al., Cooperation between osteoblastic cells and endothelial cells enhances their phenotypic responses and improves osteoblast function, Biotechnol Lett, 35, 1135 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. J Rouwkema, PE Westerweel, J de Boer, et al., The use of endothelial progenitor cells for prevascularized bone tissue engineering, Tissue Eng Part A, 15, 2015 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. R Zhang, Z Gao, W Geng, et al., Engineering vascularized bone graft with osteogenic and angiogenic lineage differentiated bone marrow mesenchymal stem cells, Artif Organs, 36, 1036 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. SM White, R Hingorani, RP Arora, et al., Longitudinal in vivo imaging to assess blood flow and oxygenation in implantable engineered tissues, Tissue Eng Part C Methods, 18, 697 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. AR Amini, CT Laurencin, SP Nukavarapu, Differential analysis of peripheral blood- and bone marrow-derived endothelial progenitor cells for enhanced vascularization in bone tissue engineering, J Orthop Res, 30, 1507 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Y Liu, SH Teoh, MS Chong, et al., Vasculogenic and osteogenesis-enhancing potential of human umbilical cord blood endothelial colony-forming cells, Stem Cells, 30, 1911 (2012).

    Article  PubMed  Google Scholar 

  62. Z Zhang, J Hu, PX Ma, Nanofiber-based delivery of bioactive agents and stem cells to bone sites, Adv Drug Deliv Rev, 64, 1129 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. J Hur, CH Yoon, HS Kim, et al., Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis, Arterioscler Thromb Vasc Biol, 24, 288 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. CH Yoon, J Hur, KW Park, et al., Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases, Circulation, 112, 1618 (2005).

    Article  PubMed  Google Scholar 

  65. A Cornejo, DE Sahar, SM Stephenson, et al., Effect of adipose tissue-derived osteogenic and endothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects, Tissue Eng Part A, 18, 1552 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. SE Haynesworth, J Goshima, VM Goldberg, et al., Characterization of cells with osteogenic potential from human marrow, Bone, 13, 81 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. SP Bruder, N Jaiswal, SE Haynesworth, Growth kinetics, selfrenewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation, J Cell Biochem, 64, 278 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. M Dominici, K Le Blanc, I Mueller, et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, 8, 315 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. B Ecarot-Charrier, FH Glorieux, M van der Rest, et al., Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture, J Cell Biol, 96, 639 (1983).

    Article  CAS  PubMed  Google Scholar 

  70. MF Pittenger, AM Mackay, SC Beck, et al., Multilineage potential of adult human mesenchymal stem cells, Science, 284, 143 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Y Liu, JK Chan, SH Teoh, Review of vascularised bone tissueengineering strategies with a focus on co-culture systems, J Tissue Eng Regen Med, (2012).

    Google Scholar 

  72. RE Unger, A Sartoris, K Peters, et al., Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials, Biomaterials, 28, 3965 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Y Kang, S Kim, M Fahrenholtz, et al., Osteogenic and angiogenic potentials of monocultured and co-cultured humanbone-marrow-derived mesenchymal stem cells and humanumbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold, Acta Biomater, 9, 4906 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. MI Santos, RE Unger, RA Sousa, et al., Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactonestarch scaffold and the in vitro development of vascularization, Biomaterials, 30, 4407 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. M Grellier, N Ferreira-Tojais, C Bourget, et al., Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells, J Cell Biochem, 106, 390 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. S Fuchs, X Jiang, H Schmidt, et al., Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells, Biomaterials, 30, 1329 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. A Stahl, A Wenger, H Weber, et al., Bi-directional cell contactdependent regulation of gene expression between endothelial cells and osteoblasts in a three-dimensional spheroidal coculture model, Biochem Biophys Res Commun, 322, 684 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. G Finkenzeller, G Arabatzis, M Geyer, et al., Gene expression profiling reveals platelet-derived growth factor receptor alpha as a target of cell contact-dependent gene regulation in an endothelial cell-osteoblast co-culture model, Tissue Eng, 12, 2889 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. J Buschmann, M Welti, S Hemmi, et al., Three-dimensional cocultures of osteoblasts and endothelial cells in DegraPol foam: histological and high-field magnetic resonance imaging analyses of pre-engineered capillary networks in bone grafts, Tissue Eng Part A, 17, 291 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. D Henrich, C Seebach, C Kaehling, et al., Simultaneous cultivation of human endothelial-like differentiated precursor cells and human marrow stromal cells on beta-tricalcium phosphate, Tissue Eng Part C Methods, 15, 551 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. S Fuchs, S Ghanaati, C Orth, et al., Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds, Biomaterials, 30, 526 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. S Fuchs, A Hofmann, C Kirkpatrick, Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells, Tissue Eng, 13, 2577 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Z Xing, Y Xue, A Finne-Wistrand, et al., Copolymer cell/scaffold constructs for bone tissue engineering: co-culture of low ratios of human endothelial and osteoblast-like cells in a dynamic culture system, J Biomed Mater Res A, 101, 1113 (2013).

    Article  PubMed  CAS  Google Scholar 

  84. Y Xue, Z Xing, S Hellem, et al., Endothelial cells influence the osteogenic potential of bone marrow stromal cells, Biomedical engineering online, 8, 34 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  85. SJ Bidarra, CC Barrias, MA Barbosa, et al., Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells, Stem Cell Res, 7, 186 (2011).

    Article  PubMed  Google Scholar 

  86. J Ma, JJ van den Beucken, F Yang, et al., Coculture of osteoblasts and endothelial cells: optimization of culture medium and cell ratio, Tissue Eng Part C Methods, 17, 349 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. AS Breitbart, DA Grande, R Kessler, et al., Tissue engineered bone repair of calvarial defects using cultured periosteal cells, Plast Reconstr Surg, 101, 567 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. SP Bruder, BS Fox, Tissue engineering of bone. Cell based strategies, Clin Orthop Relat Res, S68 (1999).

    Google Scholar 

  89. W Fu, Z Xiang, Research progress of co-culture system for constructing vascularized tissue engineered bone, Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 28, 179 (2014).

    PubMed  Google Scholar 

  90. D Kaigler, PH Krebsbach, ER West, et al., Endothelial cell modulation of bone marrow stromal cell osteogenic potential, FASEB J, 19, 665 (2005).

    CAS  PubMed  Google Scholar 

  91. R Jarrahy, W Huang, GH Rudkin, et al., Osteogenic differentiation is inhibited and angiogenic expression is enhanced in MC3T3-E1 cells cultured on three-dimensional scaffolds, Am J Physiol Cell Physiol, 289, C408 (2005).

  92. W Lai, Y Li, S Mak, et al., Reconstitution of bone-like matrix in osteogenically differentiated mesenchymal stem cell–collagen constructs: A three-dimensional in vitro model to study hematopoietic stem cell niche, Journal of Tissue Engineering, 4, (2013).

  93. J Kim, HN Kim, KT Lim, et al., Synergistic effects of nanotopography and co-culture with endothelial cells on osteogenesis of mesenchymal stem cells, Biomaterials, 34, 7257 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. X Hu, KG Neoh, J Zhang, et al., Immobilization strategy for optimizing VEGF's concurrent bioactivity towards endothelial cells and osteoblasts on implant surfaces, Biomaterials, 33, 8082 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. J Guerrero, S Catros, SM Derkaoui, et al., Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis, Acta Biomater, 9, 8200 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. JE Barralet, T Gaunt, AJ Wright, et al., Effect of porosity reduction by compaction on compressive strength and microstructure of calcium phosphate cement, J Biomed Mater Res, 63, 1 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. L Zhao, MD Weir, HH Xu, An injectable calcium phosphatealginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering, Biomaterials, 31, 6502 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. W Chen, H Zhou, MD Weir, et al., Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration, Acta Biomater, 8, 2297 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. W Thein-Han, HH Xu, Prevascularization of a gas-foaming macroporous calcium phosphate cement scaffold via coculture of human umbilical vein endothelial cells and osteoblasts, Tissue Eng Part A, 19, 1675 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Y Liu, SH Teoh, MS Chong, et al., Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering, Tissue Eng Part A, 19, 893 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. JM Melero-Martin, ME De Obaldia, SY Kang, et al., Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells, Circ Res, 103, 194 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. DO Traktuev, DN Prater, S Merfeld-Clauss, et al., Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells, Circ Res, 104, 1410 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. TM McFadden, GP Duffy, AB Allen, et al., The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo, Acta Biomater, 9, 9303 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. RR Rao, AW Peterson, J Ceccarelli, et al., Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials, Angiogenesis, 15, 253 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. B Sacchetti, A Funari, S Michienzi, et al., Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment, Cell, 131, 324 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. F Verseijden, SJ Posthumus-van Sluijs, P Pavljasevic, et al., Adult human bone marrow- and adipose tissue-derived stromal cells support the formation of prevascular-like structures from endothelial cells in vitro, Tissue Eng Part A, 16, 101 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. J Ma, F Yang, SK Both, et al., In vitro and in vivo angiogenic capacity of BM-MSCs/HUVECs and AT-MSCs/HUVECs cocultures, Biofabrication, 6, 015005 (2014).

  108. AR Shah, SR Shah, S Oh, et al., Migration of co-cultured endothelial cells and osteoblasts in composite hydroxyapatite/polylactic acid scaffolds, Ann Biomed Eng, 39, 2501 (2011).

    Article  PubMed  Google Scholar 

  109. FA Saleh, M Whyte, PG Genever, Effects of endothelial cells on human mesenchymal stem cell activity in a three-dimensional in vitro model, Eur Cell Mater, 22, 242 (2011).

    CAS  PubMed  Google Scholar 

  110. WY Lee, HW Tsai, JH Chiang, et al., Core-shell cell bodies composed of human cbMSCs and HUVECs for functional vasculogenesis, Biomaterials, 32, 8446 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. M Kolbe, Z Xiang, E Dohle, et al., Paracrine effects influenced by cell culture medium and consequences on microvessel-like structures in cocultures of mesenchymal stem cells and outgrowth endothelial cells, Tissue Eng Part A, 17, 2199 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Won Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, GZ., Han, CM. & Kim, HW. In vitro co-culture strategies to prevascularization for bone regeneration: A brief update. Tissue Eng Regen Med 12, 69–79 (2015). https://doi.org/10.1007/s13770-014-0095-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-0095-7

Keywords

Navigation