Skip to main content
Log in

Migration of Co-cultured Endothelial Cells and Osteoblasts in Composite Hydroxyapatite/Polylactic Acid Scaffolds

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Regeneration of bone in large segmental bone defects requires regeneration of both cortical bone and trabecular bone. A scaffold design consisting of a hydroxyapatite (HA) ring surrounding a polylactic acid (PLA) core simulates the structure of bone and provides an environment for indirect and direct co-culture conditions. In this experiment, human umbilical vein endothelial cells (EC) and normal human primary osteoblasts (OB) were co-cultured to evaluate cell migration and interactions within this biphasic composite scaffold. Both cell types were able to migrate between the different material phases of the scaffold. It was also observed that OB migration increased when they were co-cultured with ECs, whereas EC migration decreased in co-culture. The results show that co-culture of ECs and OBs in this composite biphasic scaffold allows for migration of cells throughout the scaffold and that pre-seeding a scaffold with ECs can increase OB infiltration into desired areas of the scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Agrawal, C. M., J. S. McKinney, D. Huang, and K. A. Athanasiou. The use of the vibrating particle technique to fabricate highly permeable biodegradable scaffolds. In: STP 1396: Synthetic Bioabsorbable Polymers for Implants, edited by C. M. Agrawal, J. Parr, and S. Lin. Philadelphia, PA: American Society for Testing and Materials, 2000.

    Chapter  Google Scholar 

  2. Agrawal, C., and R. Ray. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 55(2):141–150, 2001.

    Article  PubMed  CAS  Google Scholar 

  3. Appleford, M., S. Oh, N. Oh, and J. L. Ong. In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair. J. Biomed. Mater. Res. A 89(4):1019–1027, 2009.

    PubMed  Google Scholar 

  4. Carano, R., and E. Filvaroff. Angiogenesis and bone repair. Drug Discov. Today 8(21):980–989, 2003.

    Article  PubMed  CAS  Google Scholar 

  5. Chim, H., J. L. Ong, J. T. Schantz, D. W. Hutmacher, and C. M. Agrawal. Efficacy of glow discharge gas plasma treatment as a surface modification process for three-dimensional poly (d,l-lactide) scaffolds. J. Biomed. Mater. Res. A 65(3):327–335, 2003.

    Article  PubMed  Google Scholar 

  6. Choong, C., D. Hutmacher, and J. Triffitt. Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering. Tissue Eng. 12(9):2521–2531, 2006.

    Article  PubMed  CAS  Google Scholar 

  7. Clarkin, C. E., R. J. Emery, A. A. Pitsillides, and C. P. Wheeler-Jones. Evaluation of VEGF-mediated signaling in primary human cells reveals a paracrine action for VEGF in osteoblast-mediated crosstalk to endothelial cells. J. Cell. Physiol. 214(2):537–544, 2008.

    Article  PubMed  CAS  Google Scholar 

  8. DeCoster, T. A., R. J. Gehlert, E. A. Mikola, and M. A. Pirela-Cruz. Management of posttraumatic segmental bone defects. J. Am. Acad. Orthop. Surg. 12(1):28–38, 2004.

    PubMed  Google Scholar 

  9. Finkemeier, C. G. Bone-grafting and bone-graft substitutes. J. Bone Joint Surg. Am. 84-A(3):454–464, 2002.

    PubMed  Google Scholar 

  10. Finkenzeller, G., G. Arabatzis, M. Geyer, A. Wenger, H. Bannasch, and G. Stark. Gene expression profiling reveals platelet-derived growth factor receptor alpha as a target of cell contact-dependent gene regulation in an endothelial cell-osteoblast co-culture model. Tissue Eng. 12(10):2889–2903, 2006.

    Article  PubMed  CAS  Google Scholar 

  11. Green, S. Skeletal defects: a comparison of bone grafting and bone transport for segmental skeletal defects. Clin. Orthop. 301:111–117, 1994.

    PubMed  Google Scholar 

  12. Guda, T. Biomechanical Evaluation of Mixed Architecture Hydroxyapatite Scaffolds for Bone Tissue Engineering. Dissertation, University of Texas at San Antonio. Ann Arbor: ProQuest/UMI, p. 147, 2008

  13. Hirschi, K. Vascular assembly in natural and engineered tissues. Ann. NY Acad. Sci. 961:223–242, 2002.

    Article  PubMed  CAS  Google Scholar 

  14. Hofmann, A., U. Ritz, S. Verrier, D. Eglin, M. Alini, S. Fuchs, C. J. Kirkpatrick, and P. M. Rommens. The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffold. Biomaterials 29:4217–4226, 2008.

    Article  PubMed  CAS  Google Scholar 

  15. Karande, T. Effect of Scaffold Architecture on Diffusion of Oxygen in Tissue Engineering Constructs. Austin, TX: Department of Biomedical Engineering, University of Texas, 2007.

    Google Scholar 

  16. Karande, T., J. Ong, and C. Agrawal. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann. Biomed. Eng. 32(12):1728–1743, 2004.

    Article  PubMed  Google Scholar 

  17. Klenke, F. M., Y. Liu, H. Yuan, E. B. Hunziker, and K. A. Siebenrock. Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J. Biomed. Mater. Res. A 85(3):777–786, 2008.

    PubMed  Google Scholar 

  18. Koike, N., D. Fukumura, O. Gralla, P. Au, J. Schechner, and R. Jain. Creation of long-lasting blood vessels. Nature 428:138–139, 2004.

    Article  PubMed  CAS  Google Scholar 

  19. Lacroix, D., and P. A. Prendergast. Mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35:1163–1171, 2002.

    Article  PubMed  CAS  Google Scholar 

  20. Malik, M., D. Puleo, R. Bizios, and R. Coremus. Osteoblasts on hydroxyapatite alumina and bone surfaces in vitro: morphology during the first 2 hours of attachment. Biomaterials 13(2):123–128, 1992.

    Article  PubMed  CAS  Google Scholar 

  21. Owens, B., J. F. Kragh, Jr., J. Macaitis, S. J. Svoboda, and J. C. Wenke. Characterization of extremity wounds in operation Iraqi freedom and operation enduring freedom. J. Orthop. Trauma 21(4):254–257, 2007.

    Article  PubMed  Google Scholar 

  22. Polan, J. L., B. Morse, S. Wetherold, R. E. Villanueva-Vedia, C. Phelix, E. Barera-Roderiquiz, D. Waggoner, N. Goswami, O. Monoz, C. M. Agrawal, et al. VFEG analysis induced by endothelialized gas–plasma treated d,l-PLA scaffolds. Cardiovasc. Radiat. Med. 3:176–182, 2002.

    Article  PubMed  Google Scholar 

  23. Rouwkema, J., J. De Boer, and C. Van Blitterswijk. Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 12(9):2685–2693, 2006.

    Article  PubMed  CAS  Google Scholar 

  24. Santos, M. I., R. E. Unger, R. A. Sousa, R. L. Reis, and C. J. Kirkpatrick. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Biomaterials 30(26):4407–4415, 2009.

    Article  PubMed  CAS  Google Scholar 

  25. Senger, D., S. Ledbetter, and K. Claffey. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the avbc integrin, osteopontin, and thrombin. Am. J. Pathol. 149:293–305, 1996.

    PubMed  CAS  Google Scholar 

  26. Shah, A., S. Shah, G. Mani, J. Wenke, and C. M. Agrawal. Endothelial cell behaviour on gas–plasma-treated PLA surfaces: the roles of surface chemistry and roughness. J. Tissue Eng. Regen. Med. 5(4):301–312, 2011.

    Article  PubMed  CAS  Google Scholar 

  27. Stahl, A., X. Wu, A. Wenger, M. Klagsbrun, and P. Kurschat. Endothelial progenitor cell sprouting in spheroid cultures is resistant to inhibition by osteoblasts: a model for bone replacement grafts. FEBS Lett. 579(24):5338–5342, 2005.

    Article  PubMed  CAS  Google Scholar 

  28. Unger, R. E., A. Sartoris, K. Peters, A. Motta, C. Migliaresi, M. Kunkel, U. Bulnheim, J. Rychly, and C. J. Kirkpatrick. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 28:3965–3976, 2007.

    Article  PubMed  CAS  Google Scholar 

  29. Villars, F., B. Guillotin, T. Amedee, S. Dutoya, L. Bordenave, R. Bareille, and J. Amedee. Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am. J. Physiol. Cell Physiol. 282:775–785, 2002.

    Google Scholar 

  30. Wang, D., M. Miura, H. Demura, and K. Sato. Anabolic effects of 1,25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells. Endocrinology 138(7):2953–2962, 1997.

    Article  PubMed  CAS  Google Scholar 

  31. Wenger, A., A. Stahl, H. Weber, G. Finkenzeller, H. G. Augustin, G. B. Stark, and U. Kneser. Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng. 10(9/10):1536–1547, 2004.

    PubMed  CAS  Google Scholar 

  32. Yu, H., P. VandeVord, W. Gong, B. Wu, Z. Song, H. Matthew, P. Wooley, and S. Yang. Promotion of osteogenesis in tissue-engineered bone by pre-seeding endothelial progenitor cells-derived endothelial cells. J. Orthop. Res. 26(8):1147–1152, 2008.

    Article  PubMed  Google Scholar 

  33. Yu, H., P. VandeVord, L. Mao, H. Matthew, P. Wooley, and S. Yang. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials 30(4):508–517, 2009.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to Dr. Colleen Witt and the UTSA CBI for instruction and use of the confocal microscope and imaging software. This work was partially supported by NIH/RCMI grant 3G12RR013646-10S1. Work for this study was sponsored by the Department of the Army (Grant No. W81XWH-07-1-0717). The US Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick, MD 21702-5014, USA, is the awarding and administering acquisition office. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army of the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mauli Agrawal.

Additional information

Associate Editor Scott I Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, A.R., Shah, S.R., Oh, S. et al. Migration of Co-cultured Endothelial Cells and Osteoblasts in Composite Hydroxyapatite/Polylactic Acid Scaffolds. Ann Biomed Eng 39, 2501–2509 (2011). https://doi.org/10.1007/s10439-011-0344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0344-z

Keywords

Navigation