Skip to main content
Log in

Thermal effects on the compressibility and permeability of municipal solid waste landfills

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The present study reveals the thermal impacts on the compressibility and permeability of municipal solid waste samples with different plastic contents. The specimens were gathered from Kahrizak landfill located in Tehran, Iran. Because of the samples' large particles, experiments were performed in a modified large oedometer at temperatures of 25, 45, and 65 °C. The results showed that the average values of \( C_{\alpha }^{\prime } \) coefficients are in the range of [0.011;0.021]. \(C_{\alpha }^{\prime }\) values varied in the range [0.25;0.46] whereas values of \( C_{r}^{\prime } \) fall in the [0.04;0.07] interval. Also, the values of horizontal to vertical permeability coefficient (kx/ky) are in the range of [3.2;9.5] for 25, 45, and 65 °C temperatures in all samples. Furthermore, the parameters of K0, ν, E, and G were calculated. Overall, the samples' compressibility increases with overburden and thermal enhancement and decreases with plastic content. Also, the permeability of samples (kx and ky) decreased with temperature and plastic content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(A\) :

Area of cross-section (m2)

\({A}_{n}\) :

Anisotropy of permeability (dimensionless)

\(C_{\alpha }^{\prime }\) :

Modified compression index (dimensionless)

\( C_{r}^{\prime } \) :

Modified unloading index (dimensionless)

\({C}_{\alpha }^{\prime}\) :

Modified coefficient of creep compression (dimensionless)

\(D\) :

Inner cell diameter (mm)

\(E\) :

Geomaterial shear modulus (kPa)

\({G}_{s}\) :

Geomaterial specific gravity (dimensionless)

\(G\) :

Geomaterial shear modulus (kPa)

\({H}_{0}\) :

Sample height (m)

\(h\) :

LTHM oedometer height (mm)

\(i\) :

Hydraulic gradient (dimensionless)

\({k}_{x}\) :

Horizontal permeability coefficient (cm/s)

\({k}_{y}\) :

Vertical permeability coefficient (cm/s)

\({K}_{0}\) :

Coefficient of at-rest lateral earth pressure (dimensionless)

\(t\) :

Time (min)

\(V\) :

Quantity of water (mL)

ν:

Geo-materials Poisson's ratio (dimensionless)

\(\omega \) :

Geo-materials moisture content (%)

\(\Delta H\) :

Variation in sample height (m)

\(\Delta logP\) :

Variation in normal effective stress (dimensionless)

\(\Delta logt\) :

Variation in time (dimensionless)

\({\Delta \varepsilon }_{v}\) :

Variation in vertical strain (dimensionless)

\({\sigma }_{h}\) :

Horizontal stress from the belt-shape lateral pressure cell (kPa)

\({\sigma }_{v}\) :

Vertical stress at the bottom of sample (kPa)

\({\sigma }_{m}\) :

Mean stress (kPa)

References

  • Acurio G, Rossin A, Teixeira PF, Zepeda F (1998) Diagnosis of municiple solid waste management in Latin America and the Caribbean. Pan American health organization, World Health Organization

  • Anunciação LG, Machado SL, Carvalho MDF (2022) Construction of a large oedometer for MSW and non-conventional materials testing. Proc Ins Civ Eng-Geotech Eng 175(4):404–413

    Article  Google Scholar 

  • Bareither CA, Breitmeyer RJ, Benson CH, Barlaz MA, Edil TB (2012) Deer track bioreactor experiment: field-scale evaluation of municipal solid waste bioreactor performance. J Geotech Geoenviron Eng 138(6):658–670

    Article  CAS  Google Scholar 

  • Bareither CA, Benson CH, Edil TB (2013) Compression of municipal solid waste in bioreactor landfills: mechanical creep and biocompression. J Geotech Geoenviron Eng 139(7):1007–1021

    Article  CAS  Google Scholar 

  • Bhat RA, Dar SA, Dar DA, Dar GH (2018) Municipal solid waste generation and current scenario of its management in India. Int J Adv Res Sci Eng 7(2):419–431

    Google Scholar 

  • Breitmeyer RJ, Benson CH, Edil TB (2019) Effects of compression and decomposition on saturated hydraulic conductivity of municipal solid waste in bioreactor landfills. J Geotech Geoenviron Eng 145(4):04019011

    Article  CAS  Google Scholar 

  • Chen YM, Zhan TL, Wei HY, Ke H (2009) Aging and compressibility of municipal solid wastes. Waste Manag 29(1):86–95

    Article  Google Scholar 

  • Chen RH, Chen KS, Liu CN (2010) Study of the mechanical compression behavior of municipal solid waste by temperature-controlled compression tests. Environ Earth Sci 61:1677–1690

    Article  Google Scholar 

  • Chhay L, Reyad MAH, Suy R, Islam MR, Mian MM (2018) Municipal solid waste generation in China: influencing factor analysis and multi-model forecasting. J Mater Cycles Waste Manag 20:1761–1770

    Article  Google Scholar 

  • Crutcher AJ, Rovers FA, McBean EA (1982) Temperature as an indicator of landfill behavior. Water Air Soil Pollut 17:213–223

    Article  CAS  Google Scholar 

  • Datta S, Zekkos D, Fei X, McDougall J (2017) Experimental assessment and modelling of coupled biochemical-physical-mechanical biodegradation process of a municipal solid waste sample from Michigan

  • Dixon N, Jones DRV (2005) Engineering properties of municipal solid waste. Geotext Geomembr 23(3):205–233

    Article  Google Scholar 

  • Dixon N, Ng’ambi S, Jones DRV (2004) Structural performance of a steep slope landfill lining system. Proc Ins Civ Eng-Geotech Eng 157(3):115–125

    Article  Google Scholar 

  • Dixon N, Whittle RW, Jones DRV, Ng’ambi S (2006) Pressuremeter tests in municipal solid waste: measurement of shear stiffness. Geotechnique 56(3):211–222

    Article  Google Scholar 

  • Durmusoglu E, Sanchez IM, Corapcioglu MY (2006) Permeability and compression characteristics of municipal solid waste samples. Environ Geol 50:773–786

    Article  Google Scholar 

  • El-Fadel M, Khoury R (2000) Modeling settlement in MSW landfills: a critical review. Crit Rev Environ Sci Technol 30(3):327–361

    Article  Google Scholar 

  • Fard MK, Shariatmadari N, Keramati M, Kalarijani HJ (2014) An experimental investigation on the mechanical behavior of MSW. Int J Civ Eng 12(4):292–303

    Google Scholar 

  • Gomes CC, Lopes ML, Oliveira PJ (2014) Stiffness parameters of municipal solid waste. Bull Eng Geol Environ 73:1073–1087

    Article  Google Scholar 

  • Hanson JL, Yeşiller N, Oettle NK (2010) Spatial and temporal temperature distributions in municipal solid waste landfills. J Environ Eng 136(8):804–814

    Article  CAS  Google Scholar 

  • Hanson JL, Yesiller N, Kendall LA (2005) Integrated temperature and gas analysis at a municipal solid waste landfill. In: Proceedings of the 16th international conference on soil mechanics and geotechnical engineering (pp 2265–2268). IOS Press

  • Hossain MS, Gabr MA, Barlaz MA (2003) Relationship of compressibility parameters to municipal solid waste decomposition. J Geotech Geoenviron Eng 129(12):1151–1158

    Article  Google Scholar 

  • Hossain MS (2002) Mechanics of compressibility and strength of solid waste in bioreactor landfills. North Carolina State University

  • Huvaj-Sarihan N, Stark TD (2008) August. Back analyses of landfill slope failures. In: Proceedings of 6th international case histories conference (pp 11–16)

  • Jiang J, Lou Z, Hg S, Duo J, Li Z (2009) Technology selection for MSW treatment in Altiplano areas using FMDM. Waste Manag Res 27(7):634–640

    Article  Google Scholar 

  • Jordan JL, Casem DT, Bradley JM, Dwivedi AK, Brown EN, Jordan CW (2016) Mechanical properties of low density polyethylene. J Dyn Behav of Mater 2:411–420

    Article  Google Scholar 

  • Karimpour-Fard M, Machado SL (2012) Deformation characteristics of MSW materials. Electr J Geotech Eng 17:2009–2024

    Google Scholar 

  • Ke H, Liu Y, Hu J, Qin R, Xu XB, Chen YM (2022) Experimental study on anisotropy of hydraulic conductivity for municipal solid waste. Waste Manag 137:39–49

    Article  Google Scholar 

  • Keramati M, Shariatmadari N, Sabbaghi M, Sadegh Abedin M (2018) Effect of confining stress and loading frequency on dynamic behavior of municipal solid waste in Kahrizak landfill. Int J Environ Sci Technol 15:1257–1264

    Article  Google Scholar 

  • Keramati M, Goodarzi S, Moradi Moghadam H, Ramesh A (2019) Evaluating the stress–strain behavior of MSW with landfill aging. Int J Environ Sci Technol 16:6885–6894

    Article  Google Scholar 

  • Khaleghi M, Karimpour-Fard M, Heshmati AA, Machado SL (2023) Thermo–hydro–mechanical response of MSW in a modified large oedometer apparatus. Int J Geomech 23(3):04022310

    Article  Google Scholar 

  • Koerner RM, Soong TY (2000) Leachate in landfills: the stability issues. Geotext Geomembr 18(5):293–309

    Article  Google Scholar 

  • Landva AO, Valsangkar AJ, Pelkey SG (2000) Lateral earth pressure at rest and compressibility of municipal solid waste. Can Geotech J 37(6):1157–1165

    Article  Google Scholar 

  • Lefebvre X, Lanini S, Houi D (2000) The role of aerobic activity on refuse temperature rise, I. Landfill experimental study. Waste Manag Res 18(5):444–452

    Article  Google Scholar 

  • Lewis AR, Homem SM, Hughes MF, Zelada-Tumialan G (2011) High school slab on grade settlement evaluation and permanent structural slab repairs. In: Structures Congress 2011 (pp 1698–1709)

  • Manassero M, Van Impe WF, Bouazza A (1996) Waste disposal and containment: state of the art report. Proc. 2nd ICEG, Osaka

  • Marques ACM, Filz GM, Vilar OM (2003) Composite compressibility model for municipal solid waste. J Geotech Geoenviron Eng 129(4):372–378

    Article  Google Scholar 

  • Mirhaji V, Jafarian Y, Baziar MH, Jafari MK (2019) Numerical and experimental studies of seismic in-soil isolation of msw landfill by geosynthetic liners: case study of Kahrizak landfill, Tehran, Iran. Amirkabir J Civ Eng 51(3):557–574

    Google Scholar 

  • Mokhtari M, Shariatmadari N, Heshmati RAA, Salehzadeh H (2015) Design and fabrication of a large-scale oedometer. J Central South Univ 22:931–936

    Article  Google Scholar 

  • Mokhtari M, Heshmati Rafsanjani AA, Shariatmadari N (2019) The effect of aging on the compressibility behavior and the physical properties of municipal solid wastes: a case study of Kahrizak landfill, Tehran. Environ Earth Sci 78:1–14

    Article  Google Scholar 

  • Mousavi MS, Eun J (2023) Effect of increased temperature and leachate recirculation on biogas production and settlement of municipal solid waste. Waste Manag Res 41(5):1026–1035

    Article  CAS  Google Scholar 

  • Passos J, Alves O, Brito P (2020) Management of municipal and construction and demolition wastes in Portugal: future perspectives through gasification for energetic valorisation. Int J Environ Sci Technol 17(5):2907–2926

    Article  Google Scholar 

  • Portelinha FHM, Correia NS, Daciolo LVP (2020) Impact of temperature on immediate and secondary compression of MSW with high and low food contents. Waste Manag 118:258–269

    Article  CAS  Google Scholar 

  • Pulat HF, Yukselen-Aksoy Y (2019) Compressibility and shear strength behaviour of fresh and aged municipal solid wastes. Environ Geotech 9(1):55–63

    Article  Google Scholar 

  • Ramaiah BJ, Ramana GV, Datta M (2017) Mechanical characterization of municipal solid waste from two waste dumps at Delhi, India. Waste Manag 68:275–291

    Article  CAS  Google Scholar 

  • Reddy KR, Hettiarachchi H, Parakalla NS, Gangathulasi J, Bogner JE (2009) Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA. Waste Manag 29(2):952–959

    Article  Google Scholar 

  • Rybnytska O, Burstein F, Rybin AV, Zaslavsky A (2018) Decision support for optimizing waste management. J Decis Syst 27(sup1):68–78

    Article  Google Scholar 

  • Saketa Y, Tamene N, Melknew M (2023) Municipal solid waste disposal site suitability analysis using multi-criteria evaluation in Assosa, Ethiopia. Int J Environ Sci Technol 20(4):3815–3830

    Article  Google Scholar 

  • Shah MV, Brahmbhatt AJ (2019) Impact of moisture mobility on compression characteristics of MSW through soil structure measurements. In: Proceedings of the 8th international congress on environmental geotechnics Volume 2: towards a sustainable geoenvironment 8th (pp. 231–238). Springer Singapore

  • Shariatmadari N, Asadi M, Karimpour-Fard M (2017) Investigation of fiber effect on the mechanical behavior of municipal solid waste by different shearing test apparatuses. Int J Environ Sci Technol 14:2239–2248

    Article  Google Scholar 

  • Singh MK (2008) Characterization of stress-deformation behaviour of municipal solid waste (Doctoral dissertation)

  • Tahmoorian F, Khabbaz H (2020) Performance comparison of a MSW settlement prediction model in Tehran landfill. J Environ Manag 254:109809

    Article  Google Scholar 

  • Timilsina BP (2001) Public and private sector involvement in municipal solid waste management: an overview of strategy, policy and practices. J Environ 6(7):68–77

    Google Scholar 

  • Towhata I (2010) Waste mechanics research needs. In: Geotechnical characterization, field measurement, and laboratory testing of municipal solid waste (pp 224–227)

  • United States Environmental Protection Agency (2011) Municipal solid waste generation, recycling, and disposal in the United States: facts and figures for 2012

  • Vilar OM, Carvalhod M (2004) Mechanical properties of municipal solid waste. J Test Eval 32(6):438–449

    Article  Google Scholar 

  • Wang Y, Pelkonen M, Kaila J (2012) Effects of temperature on the long-term behaviour of waste degradation, emissions and post-closure management based on landfill simulators. Open Waste Manag J. https://doi.org/10.2174/1876400201205010019

    Article  Google Scholar 

  • Wei KM, Zhu SH, Yu XH (2014) Influence of the scale effect on the mechanical parameters of coarse-grained soils. Iran J Sci Technol Trans Civ Eng 38:75

    Google Scholar 

  • Xie M, Aldenkortt D, Wagner JF, Rettenberger G (2006) Effect of plastic fragments on hydraulic characteristics of pretreated municipal solid waste. Can Geotech J 43(12):1333–1343

    Article  Google Scholar 

  • Xu H, Qiu H, Zhu G, Zhan L, Zhang Z, Xu X, Chen Y, Wang Y (2019) Comparison of settlement behaviors of high-food-waste-content (HFWC) and low-food-waste-content (LFWC) MSWs and assessment of their prediction models. Sci China Technol Sci 62(12):2271–2292

    Article  Google Scholar 

  • Xu H, Wang JN, Zhan LT, Zhang ZY, Xu XB, Chen YM, Yao K (2020) Characterization of compression behaviors of high food waste content (HFWC) MSW and no food waste content (NFWC) MSW in China. Waste Manag 103:305–313

    Article  Google Scholar 

  • Yang R, Xu Z, Chai J, Qin Y, Li Y (2016) Permeability test and slope stability analysis of municipal solid waste in Jiangcungou landfill, Shaanxi, China. J Air Waste Manag Assoc 66(7):655–662

    Article  Google Scholar 

  • Yang R, Xu Z, Chai J (2018) A review of characteristics of landfilled municipal solid waste in several countries: physical composition, unit weight, and permeability coefficient. Pol J Environ Stud 27(6):2425

    Article  Google Scholar 

  • Zacho KO, Mosgaard MA (2016) Understanding the role of waste prevention in local waste management: a literature review. Waste Manag Res 34(10):980–994

    Article  Google Scholar 

  • Zeccos DP (2005) Evaluation of static and dynamic properties of municipal solid-waste. University of California, Berkeley

    Google Scholar 

  • Zeng G, Liu L, Xue Q, Wan Y, Ma J, Zhao Y (2017) Experimental study of the porosity and permeability of municipal solid waste. Environ Prog Sustain Energy 36(6):1694–1699

    Article  CAS  Google Scholar 

  • Zhang J, Yang Q, Liu D (2015) A comprehensive study on numerical analysis of contaminant migration process in compacted clay liner and underlying aquifer for MSW landfill. Eur J Environ Civ Eng 19(8):950–975

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the management of Aradkoh processing complex. The authors also acknowledgment the assistance of Prof. Nader Shariatmadari, En. Iman Sheikhosseini Lori.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. R. Heshmati.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Editorial responsibility: Hari Pant.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaleghi, M., Heshmati, A.A.R., Karimpour-Fard, M. et al. Thermal effects on the compressibility and permeability of municipal solid waste landfills. Int. J. Environ. Sci. Technol. 21, 73–90 (2024). https://doi.org/10.1007/s13762-023-05180-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-05180-5

Keywords

Navigation