Skip to main content
Log in

Non-woven polypropylene fabric modified with carbon nanotubes and decorated with nanoakaganeite for arsenite removal

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Due to its harmful impact on human health, the presence of heavy metals, metalloids and other toxic pollutants in drinking or irrigation water is a major concern. Recent studies have proved that nanosized adsorbents are significantly more effective than their microsized counterparts. Particular attention has been given to nanocomposites with nanoadsorbents embedded in matrixes that could provide stability to the material and contribute to eliminating problems that may appear when using conventional granular systems. This study presents the preparation of a novel hybrid filter from a commercially available polypropylene (PP) non-woven fabric matrix modified with multiwall carbon nanotubes (MWCNT) and iron oxy(hydroxide) nanoparticles, and its use in the removal of As(III). A Box–Behnken statistical experimental design has been chosen to explore relevant variables affecting the filter performance: (1) As(III) concentration, (2) pH and (3) sorbent dose. From an As(III) concentration of 10 mg L−1, at pH 6.5 and with a sorbent dose of 5 g L−1, the PP filter modified with MWCNT removes 10% of the initial metalloid concentration, reaching a capacity of 0.27 mg g−1. After modification with iron oxy(hydroxide), the performance of the material is largely enhanced. The filter, under the same conditions, removes 90% of the initial As(III) concentration, reaching a capacity almost tenfold higher (2.54 mg g−1). This work demonstrates that the developed hybrid filter is effective toward the removal of As(III) in a wide range of pHs. A cubic regression model to compute the removal of the filter as a function of pH and sorbent dose is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abernathy CO, Calderon RL, Chappell WR (1997) Arsenic; exposure and health effects. Springer, Berlin. doi:10.1007/978-94-011-5864-0

    Book  Google Scholar 

  • Addo Ntim S, Mitra S (2011) Removal of trace arsenic to meet drinking water standards using iron oxide coated multiwall carbon nanotubes. J Chem Eng Data 56:2077–2083. doi:10.1021/je1010664

    Article  CAS  Google Scholar 

  • Amini M et al (2008) Statistical modeling of global geogenic arsenic contamination in groundwater. Environ Sci Technol 42:3669–3675

    Article  CAS  Google Scholar 

  • Bashir S, Mccabe RW, Boxall C, Leaver MS, Mobbs D (2009) Synthesis of α-and β-FeOOH iron oxide nanoparticles in non-ionic surfactant medium. J Nanopart Res 11:701–706. doi:10.1007/s11051-008-9467-z

    Article  CAS  Google Scholar 

  • Behzadi M, Taher MA, Hassani Moghaddam F (2017) Evaluation of the effectiveness of carbonaceous adsorbents on simultaneous extraction of heavy metals: a comparative study. Int J Environ Sci Technol 14:999–1010. doi:10.1007/s13762-016-1205-y

    Article  CAS  Google Scholar 

  • Bhatia M, Satish Babu R, Sonawane SH, Gogate PR, Girdhar A, Reddy ER, Pola M (2017) Application of nanoadsorbents for removal of lead from water. Int J Environ Sci Technol 14:1135–1154. doi:10.1007/s13762-016-1198-6

    Article  CAS  Google Scholar 

  • Carrillo A, Drever JI (1998) Adsorption of arsenic by natural aquifer material in the San Antonio-El Triunfo mining area, Baja California, Mexico. Environ Geol 35:251–257. doi:10.1007/s002540050311

    Article  CAS  Google Scholar 

  • Chen B et al (2014) One-pot, solid-phase synthesis of magnetic multiwalled carbon nanotube/iron oxide composites and their application in arsenic removal. J Colloid Interface Sci 434:9–17. doi:10.1016/j.jcis.2014.07.046

    Article  CAS  Google Scholar 

  • Escudero C, Fiol N, Villaescusa I, J-C Bollinger (2009) Arsenic removal by a waste metal (hydr)oxide entrapped into calcium alginate beads. J Hazard Mater 164:533–541. doi:10.1016/j.jhazmat.2008.08.042

    Article  CAS  Google Scholar 

  • Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8:471–482. doi:10.1007/s11783-014-0654-0

    Article  CAS  Google Scholar 

  • Grant IJ, Ward IM (1965) The infra-red spectrum of syndiotactic polypropylene. Polymer 6:223–230. doi:10.1016/0032-3861(65)90090-X

    Article  CAS  Google Scholar 

  • Habuda-Stanić M, Nujić M (2015) Arsenic removal by nanoparticles: a review. Environ Sci Pollut Res 22:8094–8123. doi:10.1007/s11356-015-4307-z

    Article  CAS  Google Scholar 

  • Holl WH (2010) Mechanisms of arsenic removal from water. Environ Geochem Health 32:287–290. doi:10.1007/s10653-010-9307-9

    Article  CAS  Google Scholar 

  • Hristovski K, Baumgardner A, Westerhoff P (2007) Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media. J Hazard Mater 147:265–274. doi:10.1016/j.jhazmat.2007.01.017

    Article  CAS  Google Scholar 

  • Hu J, Tong Z, Chen G, Zhan X, Hu Z (2014) Adsorption of roxarsone by iron (hydr)oxide-modified multiwalled carbon nanotubes from aqueous solution and its mechanisms. Int J Environ Sci Technol 11:785–794. doi:10.1007/s13762-013-0261-9

    Article  CAS  Google Scholar 

  • Jamrozik A et al (2014) Influence of iron contaminations on local and bulk magnetic properties of nonfunctionalized and functionalized multi-wall carbon nanotubes. Phys Status Solidi A 669:661–669

    Article  CAS  Google Scholar 

  • Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158:2335–2349. doi:10.1016/j.envpol.2010.03.024

    Article  CAS  Google Scholar 

  • Kousha M, Daneshvar E, Sohrabi MS, Jokar M, Bhatnagar A (2012) Adsorption of acid orange II dye by raw and chemically modified brown macroalga Stoechospermum marginatum. Chem Eng J 192:67–76. doi:10.1016/j.cej.2012.03.057

    Article  CAS  Google Scholar 

  • Ma J et al (2013) One-pot, large scale synthesis of magnetic activated carbon nanotubes and their application for arsenic removal. J Mater Chem A1:4662–4666. doi:10.1039/c3ta10329c

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  • Mishra AK, Ramaprabhu S (2010) Magnetite decorated multiwalled carbon nanotube based supercapacitor for arsenic removal and desalination of seawater. J Phys Chem 144:2583–2590

    Google Scholar 

  • Moradlou O, Dehghanpour Farashah S, Masumian F, Banazadeh A (2016) Magnetite nanoplates decorated on anodized aluminum oxide nanofibers as a novel adsorbent for efficient removal of As(III). Int J Environ Sci Technol. doi:10.1007/s13762-016-0941-3

    Article  Google Scholar 

  • Narayan R (2010) Use of nanomaterials in water purification. Mater Today 13:44–46. doi:10.1016/S1369-7021(10)70108-5

    Article  CAS  Google Scholar 

  • Przekop R, Gradoń L (2008) Deposition and filtration of nanoparticles in the composites of nano- and microsized fibers. Aerosol Sci Technol 42:483–493

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946. doi:10.1016/j.watres.2012.09.058

    Article  CAS  Google Scholar 

  • Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43:3124–3131. doi:10.1016/j.carbon.2005.06.019

    Article  CAS  Google Scholar 

  • Rossi RJ (2010) Applied biostatistics for the health sciences. Wiley, Hoboken

    Google Scholar 

  • Sano E, Akiba E (2014) Electromagnetic absorbing materials using nonwoven fabrics coated with multi-walled carbon nanotubes. Carbon 78:463–468. doi:10.1016/j.carbon.2014.07.027

    Article  CAS  Google Scholar 

  • Sayed M, Burham N (2017) Removal of cadmium (II)from aqueous solution and natural water samples using polyurethane foam/organobentonite/iron oxide nanocomposite adsorbent. Int J Environ Sci Technol. doi:10.1007/s13762-017-1369-0

    Article  Google Scholar 

  • Shak KPY, Wu TY (2015) Optimized use of alum together with unmodified Cassia obtusifolia seed gum as a coagulant aid in treatment of palm oil mill effluent under natural pH of wastewater. Ind Crops Prod 76:1169–1178. doi:10.1016/j.indcrop.2015.07.072

    Article  CAS  Google Scholar 

  • Shokati Poursani A, Nilchi A, Hassani A, Tabibian S, Asad Amraji L (2017) Synthesis of nano-γ-Al2O3/chitosan beads (AlCBs) and continuous heavy metals removal from liquid solution. Int J Environ Sci Technol 14:1459–1468. doi:10.1007/s13762-017-1357-4

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Sperlich A, Werner A, Genz A, Amy G, Worch E, Jekel M (2005) Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: modeling and experimental approaches. Water Res 39:1190–1198

    Article  CAS  Google Scholar 

  • Tang L et al (2017) Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3 nanobunches: the effect of environmental conditions and reaction mechanism. Water Res 117:175–186. doi:10.1016/j.watres.2017.03.059

    Article  CAS  Google Scholar 

  • Tawabini BS, Al-Khaldi SF, Khaled MM, Ma Atieh (2011) Removal of arsenic from water by iron oxide nanoparticles impregnated on carbon nanotubes. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 46:215–223

    Article  CAS  Google Scholar 

  • Teh CY, Budiman PM, Shak KPY, Wu TY (2016) Recent advancement of coagulation-flocculation and its application in wastewater treatment. Ind Eng Chem Res 55:4363–4389. doi:10.1021/acs.iecr.5b04703

    Article  CAS  Google Scholar 

  • Teh CY, Wu TY, Juan JC (2017) An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant. Chem Eng J 317:586–612. doi:10.1016/j.cej.2017.01.001

    Article  CAS  Google Scholar 

  • Wang L, Giammar DE (2015) Effects of pH, dissolved oxygen, and aqueous ferrous iron on the adsorption of arsenic to lepidocrocite. J Colloid Interface Sci 448:331–338. doi:10.1016/j.jcis.2015.02.047

    Article  CAS  Google Scholar 

  • World Health Organization WH (2008) Guidelines for drinking-water quality I:515

  • Żywczyk Ł, Moskal A, Gradoń L (2015) Numerical simulation of deep-bed water filtration. Sep Purif Technol 156:51–60. doi:10.1016/j.seppur.2015.10.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Artur Małolepszy is acknowledged for the purification of MWCNTs. This work has been supported by the European Union in the framework of European Social Fund through the Warsaw University of Technology Development Programme. This work was supported by Switzerland through the Swiss Contribution to the enlarged European Union within the project “Novel nanocomposite filter media for adsorption based water treatment—NANOSORP,” PSP:209/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Escudero-Oñate.

Additional information

Editorial responsibility: Ta Yeong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomaszewska, J., Smektała, P., Zgłobicka, I. et al. Non-woven polypropylene fabric modified with carbon nanotubes and decorated with nanoakaganeite for arsenite removal. Int. J. Environ. Sci. Technol. 15, 1831–1842 (2018). https://doi.org/10.1007/s13762-017-1559-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1559-9

Keywords

Navigation