Skip to main content
Log in

Synthesis of nano-γ-Al2O3/chitosan beads (AlCBs) and continuous heavy metals removal from liquid solution

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this work, synthesis of chitosan beads impregnated with nano-γ-Al2O3 (AlCB) was carried out. The characteristics of the synthesized adsorbent were obtained by using Brunauer Emmett and Teller technique and Scanning Electron Microscopy method. The use of AlCB in continuous removal of chromium, lead, nickel and cadmium ions from liquid solution was studied using fixed-bed column system. Bed depths and flow rate effects on breakthrough and uptake capacity of the adsorbent in column were also examined. Dynamic parameters of the adsorption were calculated by using bed depth service time (BDST) and Thomas models. In both models, the data were analyzed by error analyzing and combining the values of determined coefficient (R 2) from regression analysis. The adsorption capacities of AlCB in breakthrough were 158.33, 183.33, 63.33 and 31.67 mg/g for chromium, lead, nickel and cadmium, respectively. In addition, BDST model was found to be an acceptable kinetic model to describe the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C 0 :

Influent concentration (mg/L)

C t :

Effluent concentration at any t (mg/L)

K Th :

Thomas rate constant [mL/(mg.min)]

K AB :

BDST the kinetic constant (L/mmol h)

M :

Mass of adsorbent (g)

N 0 :

Dynamic bed capacity (g/L)

N b :

Is dynamic removal capacity of the fixed-bed column (mmol/cm3)

q e :

Is the equilibrium heavy metals uptake (mg/g)

Q :

Volumetric flow rate (mL/min)

t b :

Time at breakthrough (h)

t :

Bed service time (h)

U 0 :

Linear flow rate (cm/h)

V :

Linear velocity of flow rate (cm/h)

Z :

Bed depth (cm)

References

  • Baghvand A, Nasrabadi T, Bidhendi GN, Vosoogh A, Karbassi A, Mehrdadi N (2010) Groundwater quality degradation of an aquifer in Iran central desert. Desalination 260(1):264–275. doi:10.1016/j.desal.2010.02.038

    Article  CAS  Google Scholar 

  • Baral SS, Das N, Ramulu TS, Sahoo SK, Das SN, Chaudhury GR (2009) Removal of Cr(VI) by thermally activated weed Salviniacucullata in a fixed-bed column. J Hazard Mater 161(2–3):1427–1435. doi:10.1016/j.jhazmat.2008.04.127

    Article  CAS  Google Scholar 

  • Boularbah A, Schwartz C, Bitton G, Aboudrar W, Ouhammou A, Louis Morel J (2006) Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere 63:811–817. doi:10.1016/j.chemosphere.2005.07.076

    Article  CAS  Google Scholar 

  • Chu KH (2010) Fixed bed sorption: setting the record straight on the Bohart–Adams and Thomas models. J Hazard Mater 177(1–3):1006–1012. doi:10.1016/j.jhazmat.2010.01.019

    Article  CAS  Google Scholar 

  • Futalan CM, Kan CC, Dalida ML, Pascua C, Wan MW (2011) Fixed-bed column studies on the removal of copper using chitosan immobilized on bentonite. Carbohydr Polym 83(2):697–704. doi:10.1016/j.carbpol.2010.08.043

    Article  CAS  Google Scholar 

  • Gerente C, Lee VKC, Le Cloirec P, McKay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption mechanisms and models review. Crit Rev Environ Sci Technol 37(1):41–127. doi:10.1080/10643380600729089

    Article  CAS  Google Scholar 

  • Han R, Wang Y, Zou W, Wang Y, Shi J (2007) Comparison of linear and nonlinear analysis in estimating the Thomas model parameters for methylene blue adsorption onto natural zeolite in fixed-bed column. J Hazard Mater 145:331–335. doi:10.1016/j.jhazmat.2006.12.027

    Article  CAS  Google Scholar 

  • Kundu S, Gupta AK (2007) As (III) removal from aqueous medium in fixed bed using iron oxide-coated cement (IOCC): experimental and modeling studies. Chem Eng J 129(1–3):123–131. doi:10.1016/j.cej.2006.10.014

    Article  CAS  Google Scholar 

  • Li X, Zhoua H, Wu W, Wei S, Xu Y, Kuang y (2015) Studies of heavy metal ion adsorption on chitosan–sulfydryl functionalized graphene oxide composites. J Colloid Interface Sci 448:389–397. doi:10.1016/j.jcis.2015.02.039

    Article  CAS  Google Scholar 

  • Lu J, Li Y, Yin M, Ma X, Lin S (2015) Removing heavy metal ions with continuous aluminum electro coagulation: a study on back mixing and utilization rate of electro-generated Al ions. Chem Eng J 267:86–92. doi:10.1016/j.cej.2015.01.011

    Article  CAS  Google Scholar 

  • Maniquiz-Redillas M, Kim LH (2014) Fractionation of heavy metals in runoff and discharge of a storm water management system and its implications for treatment. J Environ Sci 26(6):1214–1222. doi:10.1016/S1001-0742(13)60591-4

    Article  CAS  Google Scholar 

  • Matouq M, Jildeh N, Qtaishat M, Hindiyeh M, Al Syouf MQ (2015) The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J Environ Chem Eng 3(2):775–784. doi:10.1016/j.jece.2015.03.027

    Article  CAS  Google Scholar 

  • Miller SM, Zimmerman JB (2010) Novel, bio-based, photoactive arsenic sorbent: TiO2-impregnated chitosan bead. Water Res 44:5722–5729. doi:10.1016/j.watres.2010.05.045

    Article  CAS  Google Scholar 

  • Miller SM, Spaulding ML, Zimmerman JB (2011) Optimization of capacity and kinetics for a novel bio-based arsenic sorbent, TiO2-impregnated chitosan bead. Water Res 45:5745–5754. doi:10.1016/j.waters.2011.08.040

    Article  CAS  Google Scholar 

  • Nilchi A, Saberi R, Azizpour H, Moradi M, Zarghami R, Naushad M (2011a) Adsorption of caesium from aqueous solution using cerium molybdate–pan composite. Chem Ecol 28(2):169–185. doi:10.1080/02757540.2011.629196

    Article  Google Scholar 

  • Nilchi A, Saberi R, Moradi M, Azizpour H, Zarghami R (2011b) b) Adsorption of caesium on copper hexacyanoferrate-PAN composite ion exchanger from aqueous solution. Chem Eng J 172(1):572–580. doi:10.1016/j.cej.2011.06.011

    Article  CAS  Google Scholar 

  • Norouzi S, Khademi H, Faz Cano A, Acosta JA (2015) Using plane tree leaves for bio monitoring of dust borne heavy metals: a case study from Isfahan, Central Iran. Ecolindic 57:64–73. doi:10.1016/j.ecolind.2015.04.011

    CAS  Google Scholar 

  • Pinho MT, Silva AMT, Fathy NA, Attia AA, Gomes HT, Faria JL (2015) Activated carbon xerogel chitosan composite materials for catalytic wet peroxide oxidation under intensified process conditions. J Environ Chem Eng 3(2):1243–1251. doi:10.1016/j.jece.2014.10.020

    Article  CAS  Google Scholar 

  • Razzaz A, Ghorban S, Hosayni L, Irani M, Aliabadi M (2015) Chitosan nanofibers functionalized by TiO2 nano particles for the removal of heavy metal ions. J Taiwan Inst Chem 58:333–334. doi:10.1016/j.jtice.2015.06.003

    Article  Google Scholar 

  • Schmuhl R, Krieg HM, Keizer K (2001) Adsorption of Cu(II) and Cr(VI) ions by chitosan: kinetics and equilibrium studies. Water SA 27(1):1–8. doi:10.4314/wsa.v27i1.5002

    CAS  Google Scholar 

  • Shahabfar A, Ghulam A, Eitzinger J (2012) Drought monitoring in Iran using the perpendicular drought indices. Int J Appl Earth Obs Geoinf 18:119–127. doi:10.1016/j.jag.2012.01.011

    Article  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170

    Article  CAS  Google Scholar 

  • ShokatiPoursani A, Nilchi A, Hassani AH, Shariat M, Nouri J (2015) A novel method for synthesis of nano-γ-Al2O3: study of adsorption behavior of chromium, nickel, cadmium and lead ions. Int J Environ Sci Technol 12(6):2003–2014. doi:10.1007/s13762-014-0740-7

    Article  CAS  Google Scholar 

  • Suksabye P, Thiravetyan P, Nakbanpote W (2008) Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith. J Hazard Mater 160:56–62. doi:10.1016/j.jhazmat.2008.02.083

    Article  CAS  Google Scholar 

  • Uddin T, Rukanuzzaman M, Rahman Khan M, Islam A (2009) Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: a fixed-bed column study. J Environ Manag 90(11):3443–3450. doi:10.1016/j.jenvman.2009.05.030

    Article  CAS  Google Scholar 

  • Xie M, Zeng L, Zhang Q, Kang Y, Xiao H, Peng Y, Chen X, Luo J (2015) Synthesis and adsorption behavior of magnetic microspheres based on chitosan/organic rectorite for low-concentration heavy metal removal. J Alloys Compd 647:892–905. doi:10.1016/j.jallcom.2015.06.065

    Article  CAS  Google Scholar 

  • Yamani JS, Miller SM, Spaulding ML, Zimmerman JB (2012) Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads. Water Res 46:4427–4434. doi:10.1016/j.watres.2012.06.004

    Article  CAS  Google Scholar 

  • Yang Q, Zhong Y, Li X, Li X, Luo K, Wu X, Chen H, Liu Y, Zeng G (2015) Adsorption-coupled reduction of bromate by Fe(II)–Al(III) layered double hydroxide in fixed-bed column: experimental and breakthrough curves analysis. J Ind Eng Chem 28:54–59. doi:10.1016/j.jiec.2015.01.022

    Article  CAS  Google Scholar 

  • Zhou T, Lu W, Liu L, Zhu H, Jiao Y, Zhang S, Han R (2015) Effective adsorption of light green anionic dye from solution by CPB modified peanut in column mode. J Mol Liquids 211:909–914. doi:10.1016/j.molliq.2015.08.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to extend their sincere gratitude to all who supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shokati Poursani.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokati Poursani, A., Nilchi, A., Hassani, A. et al. Synthesis of nano-γ-Al2O3/chitosan beads (AlCBs) and continuous heavy metals removal from liquid solution. Int. J. Environ. Sci. Technol. 14, 1459–1468 (2017). https://doi.org/10.1007/s13762-017-1357-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1357-4

Keywords

Navigation