Skip to main content

Advertisement

Log in

A review of the ecotoxicological effects of nanowires

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

We briefly reviewed the existing research on the ecotoxicity of nanowires and suggested directions for further study. Nanowires are technological innovations that can benefit humans. However, it is important to consider the effects of nanowires on the environment. Only a few studies have reported acute and chronic ecological toxicity of nanowires on aquatic and terrestrial organisms, and limited research papers have reported antibacterial effects of nanowires. It is assumed that nanowires have a toxic mechanism similar to that of nanoparticles or ions, but the mechanism remains unknown because so little research has been conducted on the ecological toxicity of nanowires. More in-depth assessments of the chronic toxicity, bioavailability, cytotoxicity, and genotoxicity of nanowires on various species are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adili A, Crowe S, Beaux MF, Cantrell T, Shapiro PJ, McIlroy DN, Gustin KE (2008) Differential cytotoxicity exhibited by silica nanowires and nanoparticles. Nanotoxicology 2:1–8. doi:10.1080/17435390701843769

    Article  CAS  Google Scholar 

  • Adolfsson K, Schneider M, Hammarin G, Häcker U, Prinz CN (2013) Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function. Nanotechnology 24:285101

    Article  Google Scholar 

  • Alexander FA Jr, Huey EG, Price DT, Bhansali S (2012) Real-time impedance analysis of silica nanowire toxicity on epithelial breast cancer cells. Analyst 137:5823–5828. doi:10.1039/c2an36341k

    Article  CAS  Google Scholar 

  • Al-Hazmi F, Alnowaiser F, Al-Ghamdi AA, Al-Ghamdi AA, Aly MM, Al-Tuwirqi RM, El-Tantawy F (2012) A new large—scale synthesis of magnesium oxide nanowires: structural and antibacterial properties. Superlattices Microstruct 52:200–209

    Article  CAS  Google Scholar 

  • An B-K, Gihm SH, Chung JW, Park CR, Kwon S-K, Park SY (2009) Color-tuned highly fluorescent organic nanowires/nanofabrics: easy massive fabrication and molecular structural origin. J Am Chem Soc 131:3950–3957

    Article  CAS  Google Scholar 

  • Artal MC, Holtz RD, Kummrow F, Alves OL, Umbuzeiro GDA (2013) The role of silver and vanadium release in the toxicity of silver vanadate nanowires toward Daphnia similis. Environ Toxicol Chem 32(908–91):2. doi:10.1002/etc.2128

    Google Scholar 

  • Brammer KS, Choi C, Oh S, Cobb CJ, Connelly LS, Loya M, Kong SD, Jin S (2009) Antibiofouling, sustained antibiotic release by Si nanowire templates. Nano Lett 9:3570–3574. doi:10.1021/nl901769m

    Article  CAS  Google Scholar 

  • Chen Z, Qin Y, Weng D, Ciao Q, Peng Y, Wang X, Li H, Wei F, Lu Y (2009) Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv Funct Mater 19:3420–3426. doi:10.1002/adfm.200900971

    Article  CAS  Google Scholar 

  • Davoudi ZM, Kandjani AE, Bhatt AI, Kyratzis IL, O’Mullane AP, Bansal V (2014) Hybrid antibacterial fabrics with extremely high aspect ratio Ag/AgTCNQ nanowires. Adv Funct Mater 24:1047–1053. doi:10.1002/adfm.201302368

    Article  CAS  Google Scholar 

  • Fellahi O, Sarma RK, Das MR, Saikia R, Marcon L, Coffinier Y, Hadjersi T, Maamache M, Boukherroub R (2013) The antimicrobial effect of silicon nanowires decorated with silver and copper nanoparticles. Nanotechnology 24:495101

    Article  Google Scholar 

  • Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087. doi:10.1021/nl100161z

    Article  CAS  Google Scholar 

  • George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6:3745–3759. doi:10.1021/nn204671v

    Article  CAS  Google Scholar 

  • Hamilton R, Wu N, Porter D, Buford M, Wolfarth M, Holian A (2009) Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6:35

    Article  Google Scholar 

  • Hassan MS, Amna T, Pandeya D, Hamza AM, Bing Y, Kim H-C, Khil M-S (2012) Controlled synthesis of Mn2O3 nanowires by hydrothermal method and their bactericidal and cytotoxic impact: a promising future material. Appl Microbiol Biotechnol 95:213–222. doi:10.1007/s00253-012-3878-6

    Article  CAS  Google Scholar 

  • Holtz RD, Filho AGS, Brocchi M, Martins D, Durán N, Alves OL (2010) Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21:185102

    Article  CAS  Google Scholar 

  • Holtz RD, Lima BA, Souza Filho AG, Brocchi M, Alves OL (2012) Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomed Nanotechnol Biol Med 8:935–940. doi:10.1016/j.nano.2011.11.012

    Article  CAS  Google Scholar 

  • Ji Z, Wang X, Zhang H, Lin S, Meng H, Sun B, George S, Xia T, Nel AE, Zink JI (2012) Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. ACS Nano 6:5366–5380. doi:10.1021/nn3012114

    Article  CAS  Google Scholar 

  • Jia Y, Luo T, Yu X-Y, Sun B, Liu J-H, Huang X-J (2013) A facile template free solution approach for the synthesis of dypingite nanowires and subsequent decomposition to nanoporous MgO nanowires with excellent arsenate adsorption properties. RSC Adv 3:5430–5437. doi:10.1039/C3RA23340E

    Article  CAS  Google Scholar 

  • Jiang Y, Gang J, Xu S-Y (2012) Contact mechanism of the Ag-doped trimolybdate nanowire as an antimicrobial agent. Nano-Micro Lett 4:228–234. doi:10.3786/nml.v4i4.p228-234

    Article  CAS  Google Scholar 

  • Johansson F, Jonsson M, Alm K, Kanje M (2010) Cell guidance by magnetic nanowires. Exp Cell Res 316:688–694. doi:10.1016/j.yexcr.2009.12.016

    Article  CAS  Google Scholar 

  • Julien DC, Richardson CC, Beaux MF 2nd, McIlroy DN, Hill RA (2010) In vitro proliferating cell models to study cytotoxicity of silica nanowires. Nanomedicine 6:84–92. doi:10.1016/j.nano.2009.03.003

    Article  CAS  Google Scholar 

  • Kılıç B, Omay D (2014) In-situ deposition of zinc oxide nanowires onto UV-cured chitin derivatives and their antibacterial properties. Mater Sci Semicond Process 20:35–40. doi:10.1016/j.mssp.2013.12.012

    Article  Google Scholar 

  • Kim MJ, Shin S (2014) Toxic effects of silver nanoparticles and nanowires on erythrocyte rheology. Food Chem Toxicol 67:80–86. doi:10.1016/j.fct.2014.02.006

    Article  CAS  Google Scholar 

  • Kumar S, Ojha AK (2013) Synthesis, characterizations and antimicrobial activities of well dispersed ultra-long CdO nanowires. AIP Adv 3:052109. doi:10.1063/1.4804930

    Article  Google Scholar 

  • Li Z, Yang R, Yu M, Bai F, Li C, Wang ZL (2008) Cellular level biocompatibility and biosafety of ZnO nanowires. J Phys Chem C 112:20114–20117. doi:10.1021/jp808878p

    Article  CAS  Google Scholar 

  • Li Y-Q, Zhu B, Li Y, Leow WR, Goh R, Ma B, Fong E, Tang M, Chen X (2014) A synergistic capture strategy for enhanced detection and elimination of bacteria. Angew Chem Int Ed 53:1–6. doi:10.1002/ange.201310135

    Article  Google Scholar 

  • Liu L, He C, Li J, Guo J, Yang D, Wei J (2013) Green synthesis of silver nanowires via ultraviolet irradiation catalyzed by phosphomolybdic acid and their antibacterial properties. New J Chem 37:2179–2185. doi:10.1039/C3NJ00135K

    Article  CAS  Google Scholar 

  • Luo L, Jie J, Zhang W, He Z, Wang J, Yuan G, Zhang W, Wu LCM, Lee S-T (2009) Silicon nanowire sensors for Hg2+ and Cd2+ ions. Appl Phys Lett 94:193101–193101–193101–193103. doi:10.1063/1.3120281

    Google Scholar 

  • Lv M, Su S, He Y, Huang Q, Hu W, Li D, Fan C, Lee S-T (2010) Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv Mater 22:5463–5467. doi:10.1002/adma.201001934

    Article  CAS  Google Scholar 

  • Mu Shi, Chang JC, Lee S-T (2007) Silicon nanowires-based fluorescence sensor for Cu(II). Nano Lett 8:104–109. doi:10.1021/nl072164k

    Article  Google Scholar 

  • Müller KH, Lulkarni J, Motskin M, Goode A, Winship P, Skepper JN, Ryan MP, Porter AE (2010) pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution. ACS Nano 4:6767–6779. doi:10.1021/nn101192z

    Article  Google Scholar 

  • Mwangi JN, Wang N, Ritts A, Kunz JL, Ingersoll CG, Li H, Deng B (2011) Toxicity of silicon carbide nanowires to sediment-dwelling invertebrates in water or sediment exposures. Environ Toxicol Chem 30:981–987. doi:10.1002/etc.467

    Article  CAS  Google Scholar 

  • Nataraj N, Anjusree GS, Madhavan AA, Priyanka P, Sankar D, Nisha N, Lakshmi SV, Jayakumar R, Balakrishnan A, Biswas R (2014) Synthesis and anti-staphylococcal activity of TiO2 nanoparticles and nanowires in ex vivo porcine skin model. J Biomed Nanotechnol 10:864–870. doi:10.1166/jbn.2014.1756

    Article  CAS  Google Scholar 

  • Nelson SM, Mahmoud T, Beaux Ii M, Shapiro P, McIlroy DN, Stenkamp DL (2010) Toxic and teratogenic silica nanowires in developing vertebrate embryos. Nanomed Nanotechnol Biol Med 6:93–102. doi:10.1016/j.nano.2009.05.003

    Article  CAS  Google Scholar 

  • Park E-J, Shim H-W, Lee G-H, Kim J-H, Kim D-W (2013) Comparison of toxicity between the different-type TiO2 nanowires in vivo and in vitro. Arch Toxicol 87:1219–1230. doi:10.1007/s00204-013-1019-3

    Article  CAS  Google Scholar 

  • Poland CA, Byrne F, Cho W-S, Prina-Mello A, Murphy FA, Davies GL, Coey JMD, Gounko Y, Duffin R, Volkov Y, Donaldson K (2012) Length-dependent pathogenic effects of nickel nanowires in the lungs and the peritoneal cavity. Nanotoxicology 6:899–911. doi:10.3109/17435390.2011.626535

    Article  CAS  Google Scholar 

  • Safi M, Yan M, Guedeau-Boudeville M-A, Conjeaud H, Garnier-Thibaud V, Boggetto N, Baeza-Squiban A, Niedergang F, Averbeck D, Berret J-F (2011) Interactions between magnetic nanowires and living cells: uptake, toxicity, and degradation. ACS Nano 5:5354–5364. doi:10.1021/nn201121e

    Article  CAS  Google Scholar 

  • Scanlan LD, Reed RB, Loguinov AV, Antczak P, Tagmount A, Aloni S, Nowinski DT, Luong P, Tran C, Karunaratne N, Pham D, Lin XX, Falciani F, Higgns CP, Ranville JF, Vulpe CD, Gilert B (2013) Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS Nano 7:10681–10694. doi:10.1021/nn4034103

    Article  CAS  Google Scholar 

  • Schinwald A, Chernova T, Donaldson K (2012) Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro. Part Fibre Toxicol 9:34

    Article  CAS  Google Scholar 

  • Schoen DT, Schoen AP, Hu L, Kim HS, Heilshorn SC, Cui Y (2010) High speed water sterilization using one-dimensional nanostructures. Nano Lett 10:3628–3632. doi:10.1021/nl101944e

    Article  CAS  Google Scholar 

  • Shang L, Li B, Dong W, Chen B, Li C, Tang W, Wang G, Wu J, Ying Y (2010) Heteronanostructure of Ag particle on titanate nanowire membrane with enhanced photocatalytic properties and bactericidal activities. J Hazard Mater 178:1109–1114. doi:10.1016/j.jhazmat.2010.01.093

    Article  CAS  Google Scholar 

  • Shingubara S, Okino O, Sayama Y, Sakaue H, Takahagi T (1997) Ordered two-dimensional nanowire array formation using self-organized nanoholes of anodically oxidized aluminum. Jpn J Appl Phys 36:7791–7795

    Article  CAS  Google Scholar 

  • Singh M, Movia D, Mahfoud OK, Volkov Y, Prina-Mello A (2013) Silver nanowires as prospective carriers for drug delivery in cancer treatment: an in vitro biocompatibility study on lung adenocarcinoma cells and fibroblasts. Eur J Nanomed 5(4):195–204

    Article  CAS  Google Scholar 

  • Singh A, Dutta DP, Ballal A, Tyagi AK, Fulekar MH (2014) Visible light driven photocatalysis and antibacterial activity of AgVO3 and Ag/AgVO3 nanowires. Mater Res Bull 51:447–454. doi:10.1016/j.materresbull.2014.01.001

    Article  CAS  Google Scholar 

  • Song MM, Song WJ, Bi H, Wang J, Wu WL, Sun J, Yu M (2010) Cytotoxicity and cellular uptake of iron nanowires. Biomaterials 31:1509–1517. doi:10.1016/j.biomaterials.2009.11.034

    Article  CAS  Google Scholar 

  • Song MM, Song WJ, Bi H, Wang J, Wu WL, Sun J, Yu M (2011) Cytotoxic potentials of tellurium nanowires in BALB/3T3 fibroblast cells. Bull Korean Chem Soc 32(9):3405–3410. doi:10.5012/bkcs.2011.32.9.3405

    Article  Google Scholar 

  • Stoehr L, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, Oostingh G (2011) Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol 8:36

    Article  CAS  Google Scholar 

  • Tamboli MS, Kulkarni MV, Patil RH, Gade WN, Navale SC, Kale BB (2012) Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf B 92:35–41. doi:10.1016/j.colsurfb.2011.11.006

    Article  CAS  Google Scholar 

  • Tang C, Sun W, Lu J, Yan W (2014) Role of the anions in the hydrothermally formed silver nanowires and their antibacterial property. J Colloid Interface Sci 416:86–94. doi:10.1016/j.jcis.2013.10.036

    Article  CAS  Google Scholar 

  • Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803. doi:10.1016/j.pmatsci.2011.08.003

    Article  CAS  Google Scholar 

  • Verma NK, Conroy J, Loyons PE, Coleman J, O’Sullivan MP, Kornfeld H, Kelleher D, Volkov Y (2012) Autophagy induction by silver nanowires: a new aspect in the biocompatibility assessment of nanocomposite thin films. Toxicol Appl Pharmacol 264:451–461. doi:10.1016/j.taap.2012.08.023

    Article  CAS  Google Scholar 

  • Visnapuu M, Joost U, Juganson K, Künnis-Beres K, Kahru A, Kisand V, Ivask A (2013) Dissolution of silver nanowires and nanospheres dictates their toxicity to Escherichia coli. BioMed Res Intern 2013:1–9. doi:10.1155/2013/819252

    Article  Google Scholar 

  • Wang X, Yang F, Yang W, Yang X (2007) A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface. Chem Commun 14(42):4419–4421. doi:10.1039/B708662H

    Article  Google Scholar 

  • Wang H, Wang L, Zhang P, Yuan L, Yu Q, Chen H (2011) High antibacterial efficiency of pDMAEMA modified silicon nanowire arrays. Colloids Surf B 83:355–359. doi:10.1016/j.colsurfb.2010.12.009

    Article  CAS  Google Scholar 

  • Wu C, Shen L, Huang Q, Zhang Y-C (2011) Synthesis of Na-doped ZnO nanowires and their antibacterial properties. Powder Technol 205:137–142. doi:10.1016/j.powtec.2010.09.003

    Article  CAS  Google Scholar 

  • Xie W, Xie Q, Jin M, Huang X, Zhang X, Shao Z, Wen G (2014) The β-SiC nanowires induce apoptosis via oxidative stress in mouse osteoblastic cell line MC3T3-E1 BioMed Res Intern 2014:1–9

  • Youssef AM, Malhat FM (2014) Selective removal of heavy metals from drinking water using titanium dioxide nanowire. Macromol Symp 337:96–101. doi:10.1002/masy.201450311

    Article  CAS  Google Scholar 

  • Zhang D, Wan Y, Li G, Zhang J, Li H (2007) Synthesis of silver nanowire/mesoporous silica composite as a highly active antiseptic. In: Zhao D, Qiu S, Tnag Y, Yu C (eds) Studies in surface science and catalysis, vol 165. Elsevier, Amsterdam, pp 841–846. doi:10.1016/S0167-2991(07)80450-2

    Google Scholar 

  • Zhang Q, Tan Y, Xie J, Lee J (2009) Colloidal synthesis of plasmonic metallic nanoparticles. Plasmonics 4:9–22. doi:10.1007/s11468-008-9067-x

    Article  CAS  Google Scholar 

  • Zhang W, Tong L, Yang C (2012) Cellular binding and internalization of functionalized silicon nanowires. Nano Lett 12:1002–1006. doi:10.1021/nl204131n

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation Grant funded by the Korean Government (NRF 201361386). This study was also supported as a cooperation project for the 2014 Environmental Risk Assessment of Manufactured Nanomaterials funded by the Korea Institute of Toxicology (KIT, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-J. An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, J.I., An, YJ. A review of the ecotoxicological effects of nanowires. Int. J. Environ. Sci. Technol. 12, 1163–1172 (2015). https://doi.org/10.1007/s13762-014-0727-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0727-4

Keywords

Navigation