Skip to main content
Log in

Comparison of toxicity between the different-type TiO2 nanowires in vivo and in vitro

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In this study, we compared their toxicity in vivo and in vitro based on the physicochemical properties of three different types of TiO2 nanowires, H2Ti3O7 nanowires (1HTO), hydrothermal treatment (2HTO), and calcination (3HTO) of 1HTO. The surface of 1HTO was smooth, and the surface of 2HTO was much rougher. The negative charge on the surface increased in the order of 2HTO, 3HTO, and 1HTO, whereas the surface area increased in the order of 3HTO, 1HTO, and 2HTO. The lung is a main exposure route of nanoparticles. On day 28 after a single instillation (1 mg/kg), three nanowires induced a Th2-type inflammatory response together with the relative increase in CD4+ T cells, especially by 2HTO. In vitro, three TiO2 nanowires (10 μg/ml) commonly induced the generation of cell debris in eight cell lines which may be the potential target organ of nanoparticles, especially by 2HTO. It seemed that the generation of cell debris coincides with the increase in autophagosome-like vacuoles in the cytosol. In further study using BEAS-2B cells originated from the lung, the protein amount from cells exposed to 2HTO decreased more clearly although the generation of reactive oxygen species (ROS) was less compared to 1HTO and 3HTO. Based on these results, we suggest that surface area may act as an important factor depends on the biological response by TiO2 nanowires. Furthermore, the increase in autophagosome-like vacuoles may be an important cause of cell death by nanoparticles with ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ai J, Biazar E, Jafarpour M, Montazeri M, Majdi A, Aminifard S et al (2011) Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomedicine 6:1117–1127

    PubMed  CAS  Google Scholar 

  • Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466

    Article  PubMed  CAS  Google Scholar 

  • Andón FT, Fadeel B. (2012) Programmed Cell Death: Molecular Mechanisms and Implications for Safety Assessment of Nanomaterials. Acc Chem Res Epub ahead of print

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  PubMed  CAS  Google Scholar 

  • Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9(5):378–390

    Article  PubMed  CAS  Google Scholar 

  • Donaldson K, Tran CL (2004) An introduction to the short-term toxicology of respirable industrial fibres. Mut Res 553:5–9

    Article  CAS  Google Scholar 

  • Donaldson K, Murphy F, Schinwald A, Duffin R, Poland CA (2011) Identifying the pulmonary hazard of high aspect ration nanoparticles to enable their safety-by-design. Nanomedicine (Lond) 6:143–156

    Article  CAS  Google Scholar 

  • Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62:362–374

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Kroemer G (2008) Necroptosis: a specialized pathway of programmed necrosis. Cell 135(7):1161–1163

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson AB, Gottlieb RA (2008) Recycle or die: the role of autophagy in cardioprotection. J Mol Cell Cardiol 44(4):654–661

    Article  PubMed  CAS  Google Scholar 

  • Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A (2009) Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fiber Toxicol 6:35

    Article  Google Scholar 

  • Harris J (2011) Autophagy and cytokines. Cytokine 56(2):140–144

    Article  PubMed  CAS  Google Scholar 

  • Henics T, Wheatley DN (1999) Cytoplasmic vacuolation, adaptation and cell death: a view on new perspectives and features. Biol Cell 91(7):485–498

    Article  PubMed  CAS  Google Scholar 

  • Horie M, Nishio K, Fujita K, Kato H, Endoh S, Suzuki M et al (2010) Cellular responses by stable and uniform ultrafine titanium dioxide particles in culture-medium dispersions when secondary particle size was 100 nm or less. Toxicol In Vitro 24:1629–1638

    Article  PubMed  CAS  Google Scholar 

  • Hsiao IL, Huang YJ (2011) Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci Total Environ 409:1219–1228

    Article  PubMed  CAS  Google Scholar 

  • International Agency for Research on Cancer. (2010) IARC Monographs on the evaluation of carcinogenic risks to humans. 93

  • Jin C, Tang Y, Yang FG, Li XL, Xu S, Fan XY et al (2011) Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biol Trace Elem Res 141:3–15

    Article  PubMed  CAS  Google Scholar 

  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K et al (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physic-chemical characteristics. Nanotoxicology 4:207–246

    Article  PubMed  CAS  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Moller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188:112–118

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K (2009) Targeting the hippocampal mossy fiber synapse for the treatment of psychiatric disorders. Mol Neurobiol 39:24–36

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9(12):1004–1010

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Kumari A, Guleria P, Yadav SK (2012) Evaluating the toxicity of selected types of nanochemicals. Rev Environ Contam Toxicol 215:39–121

    Article  PubMed  Google Scholar 

  • Lee DK, Cho IS, Lee SW, Kim DH, Shim HW, Kim DW, Hong KS. (2010) Low-temperature synthesis of phase-pure0D-1D BaTiO3 nanostructures using H2Ti3O7 templates. Euro J Inorg Chem 1343–1347

  • Madl AK, Pinkerton KE (2009) Health effects of inhaled engineered and incidental nanoparticles. Crit Rev Toxicol 39:629–658

    Article  PubMed  CAS  Google Scholar 

  • Magrez A, Horvath L, Smajda R, Salicio V, Pasquier N, Forro L et al (2009) Cellular toxicity of TiO2-based nanofilaments. ACS Nano 3:2274–2280

    Article  PubMed  CAS  Google Scholar 

  • Meissner T, Potthoff A, Richter V (2009) Physico-chemical characterization in the light of toxicological effects. Inhal Toxicol 21(Suppl 1):35–39

    Article  PubMed  CAS  Google Scholar 

  • Moolgavkar SH, Brown RC, Turim J (2001) Biopersistence, fiber length, and cancer risk assessment for inhaled fibers. Inhal Toxicol 13:755–772

    Article  PubMed  CAS  Google Scholar 

  • Oh WK, Kim S, Choi M, Kim C, Jeong YS, Cho BR et al (2010) Cellular uptake, cytotoxicity, and innate immune response of silica-titania hollow nanoparticles based on size and surface functionality. ACS Nano 4:5301–5313

    Article  PubMed  CAS  Google Scholar 

  • Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180:222–229

    Article  PubMed  CAS  Google Scholar 

  • Sanchez VC, Pietruska JR, Miselis NR, Hurt RH, Kane AB (2009) Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:511–529

    Article  PubMed  CAS  Google Scholar 

  • Schanen BC, Karakoti AS, Seal S, Drake DR 3rd, Warren WL, Self WT (2009) Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct. ACS Nano 3:2523–2532

    Article  PubMed  CAS  Google Scholar 

  • Schmid D, Münz C (2007) Innate and adaptive immunity through autophagy. Immunity 27(1):11–21

    Article  PubMed  CAS  Google Scholar 

  • Schwartz LM, Smith SW, Jones ME, Osborne BA (1993) Do all programmed cell deaths occur via apoptosis? Proc Natl Acad Sci USA 90(3):980–984

    Article  PubMed  CAS  Google Scholar 

  • Shukla RK, Kumar A, Pandey AK, Singh SS, Dhawan A (2011) Titanium dioxide nanoparticles induce oxidative stress-mediated apoptosis in human keratinocyte cells. J Biomed Nanotechnol 7:100–101

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Nalwa HS (2007) Nanotechnology and health safety—toxicity and risk assessments of nanostructured materials on human health. J Nanosci Nanotechnol 7:3048–3070

    Article  PubMed  CAS  Google Scholar 

  • Teow Y, Asharani PV, Hande MP, Valiyaveettil S (2011) Health impact and safety of engineered nanomaterials. Chem Commun (Camb) 47:7025–7038

    Article  CAS  Google Scholar 

  • Wang JX, Fan YB, Gao Y, Hu QH, Wang TC (2009) TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials 30:4590–4600

    Article  PubMed  CAS  Google Scholar 

  • Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91:227–236

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Sun J, Xue Y (2010) Involvement of JNK and p53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol Lett 199:269–276

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Liu P, Li J (2012) Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 82(3):249–258

    Article  PubMed  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12:1542–1552

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Chen Q, Peng LM (2005) Structure and formation of H2Ti3O7 nanotubes in an alkali environment. Phys Rev B 71:014104

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2011-35B-E00011, NRF-2011-0030745).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Jung Park.

Additional information

Eun-Jung Park and Hyun-Woo Shim contributed equally to this work as first author.

Eun-Jung Park and Dong-Wan Kim contributed equally to this work as corresponding author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (PDF 1496 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, EJ., Shim, HW., Lee, GH. et al. Comparison of toxicity between the different-type TiO2 nanowires in vivo and in vitro. Arch Toxicol 87, 1219–1230 (2013). https://doi.org/10.1007/s00204-013-1019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1019-3

Keywords

Navigation