Skip to main content

Advertisement

Log in

Uncertainty analysis for nonpoint source pollution modeling: implications for watershed models

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Uncertainty is inherent in watershed modeling but it is not fully acknowledged in model applications. This review focuses on uncertainty issues related to the Soil and Water Assessment Tool (SWAT) model, which is one of the most useful tools for simulating nonpoint source (NPS) pollution processes. We considered numerous studies that addressed three types of uncertainty in detail, i.e., the model inputs, parameters, and model structure. It has been shown that rainfall data, in terms of the spatial rainfall variability and the accuracy of the measured data, play a key role in the accuracy of the SWAT model. Geographic information system inputs, including the digital elevation model, land use map, and soil type map, have also been identified as key sources of input errors. With respect to the parameter uncertainty and model structural uncertainty, it is anticipated that the complex, nonlinear structure, and numerous parameters included in the SWAT model may lead to a failure to identify parameters, as well as equifinality phenomenon. We also compared some widely used uncertainty analysis methods, such as the generalized likelihood uncertainty estimation and first-order error analysis, to provide reliable guidance for the application of the SWAT model. This study benefits a wide range of researchers, who are concerned with uncertainty issues in NPS pollution modeling, and it provides insights into the application of watershed models in the development of watershed programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbaspour KC, Johnson CA, Van Genuchten MT (2004) Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J 3(4):1340–1352

    Article  Google Scholar 

  • Arabi M, Frankenberger JR, Engel BA, Arnold JG (2008) Representation of agricultural conservation practices with SWAT. Hydrol Process 22(16):3042–3055

    Article  Google Scholar 

  • Arhonditsis GB, Perhar G, Zhang W, Massos E, Shi M, Das A (2008) Addressing equifinality and uncertainty in eutrophication models. Water Resour Res 44(1):W01420

    Article  Google Scholar 

  • Bardossy A, Das T (2008) Influence of rainfall observation network on model calibration and application. Hydrol Earth Syst Sci 12(1):77–89

    Article  Google Scholar 

  • Barlund I, Kirkkala T, Malve O, Kamari J (2007) Assessing SWAT model performance in the evaluation of management actions for the implementation of the Water Framework Directive in a Finnish catchment. Environ Model Softw 22(5):719–724

    Article  Google Scholar 

  • Beck MB (1987) Water quality modeling: a review of the analysis of uncertainty. Water Resour Res 23(8):1393–1442

    Article  CAS  Google Scholar 

  • Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320(1–2):18–36

    Article  Google Scholar 

  • Beven KJ, Alcock RE (2012) Modelling everything everywhere: a new approach to decision-making for water management under uncertainty. Freshw Biol 57(s1):124–132

    Article  Google Scholar 

  • Beven K, Binley A (1992) The future of distributed models—model calibration and uncertainty prediction. Hydrol Process 6(3):279–298

    Article  Google Scholar 

  • Bobba AG, Singh VP, Bengtsson L (1996) Application of first-order and monte carlo analysis in watershed water quality models. Water Resour Manag 10(3):219–240

    Article  Google Scholar 

  • Bobba AG, Singh VP, Bengtsson L (2000) Application of environmental models to different hydrological systems. Ecol Model 125(1):15–49

    Article  CAS  Google Scholar 

  • Carter JG, White I (2012) Environmental planning and management in an age of uncertainty: the case of the Water Framework Directive. J Environ Manage 113:228–236

    Article  Google Scholar 

  • Chaubey I, Haan CT, Salisbury JM, Grunwald S (1999) Quantifying model output uncertainty due to spatial variability of rainfall. J Am Water Resour Assoc 35(5):1113–1123

    Article  CAS  Google Scholar 

  • Chaubey I, Cotter AS, Costello TA, Soerens TS (2005) Effect of DEM data resolution on SWAT output uncertainty. Hydrol Process 19(3):621–628

    Article  CAS  Google Scholar 

  • Chen CF, Ma HW, Reckhow KH (2007) Assessment of water quality management with a systematic qualitative uncertainty analysis. Sci Total Environ 374(1):13–25

    Article  CAS  Google Scholar 

  • Chen L, Liu RM, Huang Q, Chen YX, Gao SH, Sun CC, Shen ZY (2013) Integrated assessment of nonpoint source pollution of a drinking water reservoir in a typical acid rain region. Int J Environ Sci Technol 10(4):651–664

    Article  CAS  Google Scholar 

  • Cho J, Bosch D, Lowrance R, Strickland T, Vellidis G (2009) Effect of spatial distribution of rainfall on temporal and spatial uncertainty of SWAT output. Trans ASABE 52(5):1545–1555

    Article  Google Scholar 

  • Dechmi F, Burguete J, Skhiri A (2012) SWAT application in intensive irrigation systems: model modification, calibration and validation. J Hydrol 470:227–238

    Article  Google Scholar 

  • Dixon B, Earls J (2009) Resample or not?! Effects of resolution of DEMs in watershed modeling. Hydrol Process 23(12):1714–1724

    Article  Google Scholar 

  • Douglas-Mankin KR, Srinivasan R, Arnold JG (2010) Soil and Water Assessment Tool (SWAT) model: current developments and applications. Trans ASABE 53(5):1423–1431

    Article  CAS  Google Scholar 

  • Fu S, Sonnenborg TO, Jensen KH, He X (2011) Impact of precipitation spatial resolution on the hydrological response of an integrated distributed water resources model. Vadose Zone J 10(1):25–36

    Article  Google Scholar 

  • Ghebremichael LT, Veith TL, Hamlett JM (2013) Integrated watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability. J Environ Manage 114:381–394

    Article  Google Scholar 

  • Gong Y, Shen Z, Hong Q, Liu R, Liao Q (2011) Parameter uncertainty analysis in watershed total phosphorus modeling using the GLUE methodology. Agric Ecosyst Environ 142(3–4):246–255

    Article  Google Scholar 

  • Gong Y, Shen Z, Liu R, Hong Q, Wu X (2012) A comparison of single- and multi-gauge based calibrations for hydrological modeling of the Upper Daning River Watershed in China’s Three Gorges Reservoir Region. Hydrol Res 43(6):822–832

    Article  Google Scholar 

  • Green WH, Ampt GA (1911) Studies on soil physics, 1. The flow of air and water through soils. J Agric Sci 4(1):11–24

    Google Scholar 

  • Harrison RM, Lambert GD, Chapple CL (1993) Spectral estimation and contrast calculation in the design of contrast-detail test objects for radiotherapy portal imaging. Phys Med Biol 38(4):545–556

    Article  Google Scholar 

  • Hong Q, Sun Z, Chen L, Liu RM, Shen ZY (2012) Small-scale watershed extended method for non-point source pollution estimation in part of the Three Gorges Reservoir Region. Int J Environ Sci Technol 9(4):595–604

    Article  Google Scholar 

  • Li Z, Xu Z, Shao Q, Yang J (2009) Parameter estimation and uncertainty analysis of SWAT model in upper reaches of the Heihe river basin. Hydrol Process 23(19):2744–2753

    Article  Google Scholar 

  • Li Z, Shao Q, Xu Z, Cai X (2010) Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method: a case study of SWAT model applied to Yingluoxia watershed in northwest China. J Hydrol 385(1–4):76–83

    Article  Google Scholar 

  • Lin S, Jing C, Coles NA, Chaplot V, Moore NJ, Wu J (2013) Evaluating DEM source and resolution uncertainties in the Soil and Water Assessment Tool. Stoch Environ Res Risk Assess 27(1):209–221

    Article  Google Scholar 

  • Liu Y, Freer J, Beven K, Matgen P (2009) Towards a limits of acceptability approach to the calibration of hydrological models: extending observation error. J Hydrol 367(1–2):93–103

    Article  Google Scholar 

  • Lin S, Jing C, Chaplot V, Yu X, Zhang Z, Moore N, Wu J (2010) Effect of DEM resolution on SWAT outputs of runoff, sediment and nutrients. Hydrol Earth Syst Sci Discuss 7(4):4411–4435

  • Maringanti C, Chaubey I, Popp J (2009) Development of a multi objective optimization tool for the selection and placement of best management practices for nonpoint source pollution control. Water Resour Res 45(6):W06406. doi:10.1029/2008WR007094

  • Masih I, Maskey S, Uhlenbrook S, Smakhtin V (2011) Assessing the impact of areal precipitation input on streamflow simulations using the SWAT Model1. J Am Water Resour Assoc 47(1):179–195

    Article  Google Scholar 

  • Melching CS, Yoon CG (1996) Key sources of uncertainty in QUAL2E model of Passaic River. J Water Resour Plan ASCE 122(2):105–113

    Article  Google Scholar 

  • Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174

    Article  Google Scholar 

  • Nandakumar N, Mein RG (1997) Uncertainty in rainfall-runoff model simulations and the implications for predicting the hydrologic effects of land-use change. J Hydrol 192(1–4):211–232

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: part 1. A discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Ng TL, Eheart JW, Cai XM (2010) Comparative calibration of a complex hydrologic model by stochastic methods GLUE and PEST. Trans ASABE 53(6):1773–1786

    Article  Google Scholar 

  • Osborn HB, Hundley JF, Lane LJ (1972) Optimum gaging of thunderstorm rainfall in southeastern arizona. Water Resour Res 8(1):259–265

    Article  Google Scholar 

  • Parasuraman K, Elshorbagy A (2008) Toward improving the reliability of hydrologic prediction: model structure uncertainty and its quantification using ensemble-based genetic programming framework. Water Resour Res 44(12):W12406

    Article  Google Scholar 

  • Park JH, Duan L, Kim B, Mitchell MJ, Shibata H (2010) Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia. Environ Int 36(2):212–225

    Article  CAS  Google Scholar 

  • Pohlert T, Huisman JA, Breuer L, Frede HG (2007) Integration of a detailed biogeochemical model into SWAT for improved nitrogen predictions—model development, sensitivity, and GLUE analysis. Ecol Model 203(3–4):215–228

    Article  CAS  Google Scholar 

  • Post J, Hattermann FF, Krysanova V, Suckow F (2008) Parameter and input data uncertainty estimation for the assessment of long-term soil organic carbon dynamics. Environ Model Softw 23(2):125–138

    Article  Google Scholar 

  • Rouhani H, Willems P, Feyen J (2009) Effect of watershed delineation and areal rainfall distribution on runoff prediction using the SWAT model. Hydrol Res 40(6):505–519

    Article  Google Scholar 

  • Schuurmans JM, Bierkens MFP (2007) Effect of spatial distribution of daily rainfall on interior catchment response of a distributed hydrological model. Hydrol Earth Syst Sci 11(2):677–693

    Article  Google Scholar 

  • SCS, Us. (1972) National engineering handbook, section 4: hydrology. USPGO, Washington

    Google Scholar 

  • Setegn SG, Srinivasan R, Melesse AM, Dargahi B (2010) SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia. Hydrol Process 24(3):357–367

    Google Scholar 

  • Shen ZY, Hong Q, Yu H (2008) Parameter uncertainty analysis of the non-point source pollution in the Daning River watershed of the Three Gorges Reservoir Region, China. Sci Total Environ 405(1–3):195–205

    Article  CAS  Google Scholar 

  • Shen ZY, Hong Q, Yu H, Niu JF (2010) Parameter uncertainty analysis of non-point source pollution from different land use types. Sci Total Environ 408(8):1971–1978

    Article  CAS  Google Scholar 

  • Shen ZY, Chen L, Chen T (2012a) Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China. Hydrol Earth Syst Sci 16(1):121–132

    Article  Google Scholar 

  • Shen ZY, Chen L, Liao Q, Liu R, Hong Q (2012b) Impact of spatial rainfall variability on hydrology and nonpoint source pollution modeling. J Hydrol 472:205–215

    Article  Google Scholar 

  • Shen ZY, Chen L, Chen T (2013a) The influence of parameter distribution uncertainty on hydrological and sediment modeling: a case study of SWAT model applied to the Daning watershed of the Three Gorges Reservoir Region, China. Stoch Environ Res Risk Assess 27(1):235–251

    Article  Google Scholar 

  • Shen ZY, Chen L, Hong Q, Qiu J, Xie H, Liu R (2013b) Assessment of nitrogen and phosphorus loads and causal factors from different land use and soil types in the Three Gorges Reservoir Area. Sci Total Environ 454–455:383–392

    Article  Google Scholar 

  • Shen ZY, Chen L, Liao Q, Liu RM, Huang Q (2013c) A comprehensive study of the effect of GIS data on hydrology and non-point source pollution modeling. Agric Water Manage 118:93–102

    Article  Google Scholar 

  • Shen ZY, Huang Q, Liao Q, Chen L, Liu RM, Xie H (2013d) Uncertainty in flow and water quality measurement data: a case study in the Daning River watershed of the Three Gorges Reservoir Region, China. Desalin Water Treat 51(19–21):3995–4001

    Article  CAS  Google Scholar 

  • Sohrabi T, Shirmohammadi A, Chu T, Montas H, Nejadhashemi A (2003) Uncertainty analysis of hydrologic and water quality predictions for a small watershed using SWAT2000. Environ Forensics 4(4):229–238

    Article  CAS  Google Scholar 

  • Spear R, Hornberger G (1980) Eutrophication in Peel Inlet—II. Identification of critical uncertainties via generalized sensitivity analysis. Water Res 14(1):43–49

    Article  CAS  Google Scholar 

  • Tanik A, Ozalp D, Seker DZ (2013) Practical estimation and distribution of diffuse pollutants arising from a watershed in Turkey. Int J Environ Sci Technol 10(2):221–230

    Article  CAS  Google Scholar 

  • Tapiador FJ, Turk FJ, Petersen W, Hou AY, García-Ortega E, Machado LAT, Angelis CF, Salio P, Kidd C, Huffman GJ, de Castro M (2012) Global precipitation measurement: methods, datasets and applications. Atmos Res 104:70–97

  • Tian P, Zhao G, Li J, Gao J, Zhang Z (2012) Integration of monthly water balance modeling and nutrient load estimation in an agricultural catchment. Int J Environ Sci Technol 9(1):163–172

    Article  CAS  Google Scholar 

  • Tripp DR, Niemann JD (2008) Evaluating the parameter identifiability and structural validity of a probability-distributed model for soil moisture. J Hydrol 353(1–2):93–108

    Article  Google Scholar 

  • Tu J (2011) Spatially varying relationships between land use and water quality across an urbanization gradient explored by geographically weighted regression. Appl Geogr 31(1):376–392

    Article  Google Scholar 

  • Vischel T, Lebel T (2007) Assessing the water balance in the Sahel: impact of small scale rainfall variability on runoff. Part 2: Idealized modeling of runoff sensitivity. J Hydrol 333(2–4):340–355

    Article  Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39(8):1201–1216

    Google Scholar 

  • Vrugt JA, Ter Braak CJ, Gupta HV, Robinson BA (2009) Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stoch Environ Res Risk Assess 23(7):1011–1026

    Article  Google Scholar 

  • Williams JR (1975) Sediment routing for agricultural watersheds. J Am Water Resour Assoc 11(5):965–974

    Article  Google Scholar 

  • Wood GB, Wiant HV, Loy RJ, Miles JA (1990) Centroid sampling—a variant of importance sampling for estimating the volume of sample trees of radiata pine. For Ecol Manage 36(2–4):233–243

    Article  Google Scholar 

  • Wu Y, Liu S (2012) Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example. Environ Model Softw 31:99–109

    Article  Google Scholar 

  • Yang J, Reichert P, Abbaspour KC (2007) Bayesian uncertainty analysis in distributed hydrologic modeling: a case study in the Thur River basin (Switzerland). Water Resour Res 43(10):W10401

    Article  Google Scholar 

  • Zak SK, Beven KJ (1999) Equifinality, sensitivity and predictive uncertainty in the estimation of critical loads. Sci Total Environ 236(1–3):191–214

    Article  CAS  Google Scholar 

  • Zhang X, Srinivasan R, Bosch D (2009) Calibration and uncertainty analysis of the SWAT model using Genetic Algorithms and Bayesian Model Averaging. J Hydrol 374(3–4):307–317

    Article  Google Scholar 

  • Zhao X, Shen ZY, Xiong M, Qi J (2011) Key uncertainty sources analysis of water quality model using the first order error method. Int J Environ Sci Technol 8(1):137–148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was funded by several grants from the National Science Foundation for Distinguished Young Scholars (No. 51025933), the National Science Foundation for Innovative Research Group (No. 51121003), and the National Basic Research Program of China (973 Project, 2010CB429003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Xie, H., Chen, L. et al. Uncertainty analysis for nonpoint source pollution modeling: implications for watershed models. Int. J. Environ. Sci. Technol. 12, 739–746 (2015). https://doi.org/10.1007/s13762-014-0598-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0598-8

Keywords

Navigation