Skip to main content
Log in

Facile synthesis of activated carbon/ZnFe2O4 hybrid composite as an efficient photocatalyst for enhanced degradation of methylene blue (MB) and reactive red 120 dye under UV light

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This study used zinc/iron acetate (as a precursor) and a carboxylic variant of activated carbon (as a matrix) to create nanostructured zinc ferrite (ZnFe2O4). Carboxylic derivative (AC–COOH) of activated carbon was obtained by nitric acid oxidation. Then, enhanced activated carbon's surface was impregnated with ZnFe2O4. ZnFe2O4 nanoparticles with a size range of 25–35 nm and a surface area of 165.8 m2g−1 were proven to have been achieved after the ZnFe2O4 nanostructure was characterized by XRD, FESEM, TEM, UV, PL, BET, and XPS. Using the same testing circumstances, the optimized photocatalyst with 10 wt.% ZnFe2O4 inserted AC demonstrated the best degrading efficeicny to methylene blue (99%) and Reactive red (94%). The Langmuir–Hinshelwood hypothesis, which states that the dye concentration is a first-order function of time, was validated by kinetic investigations. The photocatalyst was shown to be stable after 7 cycles of recycling under optimal circumstances in a study of the reusability of a 10-ZnFe2O4/AC photocatalyst. In addition, PL, TRPL, EIS, and transient-photocurrent response all provide strong evidence for the efficient charge separation in ZnFe2O4/AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. M. Wadood, F. Hasan, M. Abbas, Removal of dyes from wastewater of textile industries using activated carbon and activated alumina, Iraqi. J. Chem. Pet. Eng. 9, 43–52 (2007)

    Google Scholar 

  2. S.K. Kansal, N. Kaur, S. Singh, Photocatalytic degradation of two commercial reactive dyes in aqueous phase using nanophotocatalysts. Nanoscale Res. Lett. 4, 709–716 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. L.C. Ling, Treatment of A Reactive Dye, A Disperse Dye, and Their Mixtures Using H2O2/Pyridine/Cu (II) System. M.Sc.Thesis submitted to University of Science, Malaysia. 2009.

  4. G.M. Shaul, T.J. Holdsworth, C.R. Dempsey, K.A. Dostal, Fate of water soluble azo dyes in the activated sludge process. J. Chemosphere 22, 107–119 (1991)

    Article  CAS  Google Scholar 

  5. A.M. Aljeboree, A.F. Alkaim, A.H. Al-Dujaili, Adsorption isotherm, kinetic modeling and thermodynamics of crystal violet dye on coconut husk-based activated carbon. Desalin. Water Treat. 53, 3656–3667 (2015)

    Article  CAS  Google Scholar 

  6. A.M. Aljeboree, A.N. Alshirifi, A.F. Alkaim, Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab. J. Chem. 56, 567–572 (2014)

    Google Scholar 

  7. Y. Sun, Z. Zhao, G. Li, P. Li, W. Zhang, Z. Han, K. Lian, J. Hu, Synthesis and characterization of Ag@ZnO nanostructures for photocatalytic degradation of rhodamine B: influence of calcination temperature and Ag content. Appl. Phys. A 123, 1–9 (2017)

    Article  Google Scholar 

  8. P. Suresh, J.J. Vijaya, L.J. Kennedy, Synergy effect in the photocatalytic degradation of textile dyeing waste water by using microwave combustion synthesized zinc oxide supported activated carbon. React. Kinet. Mech. Catal. 114, 767–780 (2015)

    Article  CAS  Google Scholar 

  9. S.O. Adio, A. Rana, B. Chanabsha, A.A.K. BoAli, M. Essa, A. Alsaadi, silver nanoparticle-loaded activated carbon as an adsorbent for the removal of mercury from Arabian gas-condensate. Arab. J. Sci. Eng. 44, 6285–6293 (2019)

    Article  CAS  Google Scholar 

  10. M. Tavakol, P.A. Azar, M. Saber-Tehrani, M. Ghaedi, Silver nanoparticles loaded on activated carbon as a novel adsorbent for the competitive removal of malachite green and methylene blue. Int. J. Life Sci. 9, 75–92 (2015)

    Article  Google Scholar 

  11. F. Zhang, X. Li, Q. Zhao, D. Zhang, Rational design of ZnFe2O4/In2O3 nanoheterostructures: efficient photocatalyst for gaseous 1, 2-dichlorobenzene degradation and mechanistic insight. ACS Sustain. Chem. Eng. 4, 4554–4562 (2016)

    Article  CAS  Google Scholar 

  12. N.U. Ain, W. Shaheen, B. Bashir, N.M. Abdelsalam, M.F. Warsi, M.A. Khan, M. Shahid, Electrical, magnetic and photoelectrochemical activity of rGO/MgFe2O4 nanocomposites under visible light irradiation. Ceram. Int. 42, 12401–12408 (2016)

    Article  CAS  Google Scholar 

  13. S. Xu, D. Feng, W. Shangguan, Preparations and photocatalytic properties of visible-light-active zinc ferrite-doped TiO2 photocatalyst. J. Phys. Chem. C 113, 2463–2467 (2009)

    Article  CAS  Google Scholar 

  14. H. Liu, H. Hao, J. Xing, J. Dong, Z. Zhang, Z. Zheng, K. Zhao, Enhanced photocatalytic capability of zinc ferrite nanotube arrays decorated with gold nanoparticles for visible light-driven photodegradation of rhodamine B. J. Mater. Sci. 51, 5872–5879 (2016)

    Article  CAS  Google Scholar 

  15. P. Thakur, R. Sharma, V. Sharma, P.B. Barman, M. Kumar, D. Barman, P. Sharma, Gd3+ doped Mn-Zn soft ferrite nanoparticles: superparamagnetism and its correlation with other physical properties. J. Magn. Magn. Mater. 432, 208–217 (2017)

    Article  CAS  Google Scholar 

  16. Z. Zhu, X. Li, Q. Zhao, H. Li, Y. Shen, G. Chen, Porous, ‘‘brick-like” NiFe2O4 nanocrystals loaded with Ag species toward effective degradation of toluene. Chem. Eng. J. 165, 64–70 (2010)

    Article  CAS  Google Scholar 

  17. P.V. Gosavi, R.B. Biniwale, Catalytic preferential oxidation of carbon monoxide over platinum supported on lanthanum ferrite–ceria catalysts for cleaning of hydrogen. J. Power. Sources 222, 1–9 (2013)

    Article  CAS  Google Scholar 

  18. E.M. Moura, M.A. Garcia, R.V. Gonçalves, P.K. Kiyohara, R.F. Jardim, L.M. Rossi, Gold nanoparticles supported on magnesium ferrite and magnesium oxide for the selective oxidation of benzyl alcohol. RSC Adv. 5, 15035–15041 (2015)

    Article  Google Scholar 

  19. S. Wu, P. Wang, Y. Cai, D. Liang, Y. Ye, Z. Tian, C. Liang, Reduced graphene oxide anchored magnetic ZnFe2O4 nanoparticles with enhanced visible-light photocatalytic activity. RSC Adv. 5, 9069–9074 (2015)

    Article  CAS  Google Scholar 

  20. S. Krishnan, S. Murugesan, V. Vasanthakumar, A. Priyadharsan, M. Alsawalha, T. Alomayri, B. Yuan, Facile green synthesis of ZnFe2O4/rGO nanohybrids and evaluation of its photocatalytic degradation of organic pollutant, photo antibacterial and cytotoxicity activities. Colloids Surfaces A Physicochem. Eng. Asp. 611, 125835 (2021)

    Article  CAS  Google Scholar 

  21. H. Deng, F. Xu, B. Cheng, J. Yu, W. Ho, Photocatalytic CO2 reduction of C/ZnO nanofibers enhanced by an Ni–NiS cocatalyst. Nanoscale 12, 7206–7213 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. S. Xu, H. Zhao, T. Li, J. Liang, S. Lu, G. Chen, S. Gao et al., Iron-based phosphides as electrocatalysts for hydrogen evolution reaction: recent advances and future perspectives. J. Mater. Chem. A. 8, 19729–19745 (2020)

    Article  CAS  Google Scholar 

  23. R. Zhang, L. Yang, X. Huang, T. Chen, F. Qu, Z. Liu et al., Se doping: an effective strategy toward Fe2O3 nanorod array for greatly enhanced solar water oxidation. J. Mater. Chem. A. 5, 12086–12090 (2017)

    Article  CAS  Google Scholar 

  24. S. Sathishkumar, M. Parthibavarman, V. Sharmila, M. Karthik, A facile and one step synthesis of large surface area SnO2 nanorods and its photocatalytic activity. J. Mater. Mater. Electron. 28, 8192–8196 (2017)

    Article  CAS  Google Scholar 

  25. P. Sivakarthik, V. Thangaraj, M. Parthibavarman, A facile and one-pot synthesis of pure and transition metals (M = Co & Ni) doped WO3 nanoparticles for enhanced photocatalytic performance. J. Mater. Mater. Electron. 28, 5990–5996 (2017)

    Article  CAS  Google Scholar 

  26. D. Madhan, M. Parthibavarman, P. Rajkumar, M. Sangeetha, Influence of Zn doping on structural, optical and photocatalytic activity of WO3 nanoparticles by a novel microwave irradiation technique. J. Mater. Mater. Electron. 26, 6823–6830 (2015)

    Article  CAS  Google Scholar 

  27. M.A.G.A. Malathi, V. Vasanthakumar, P. Arunachalam, J. Madhavan, A low cost additive-free facile synthesis of BiFeWO6/BiVO4 nanocomposite with enhanced visible light induced photocatalytic activity. J. Colloid Interface Sci. 506, 553–563 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. M. Jayashree, V. Sharmila, K.L. Meganathan, R. BoopathiRaja, M. Parthibavarman, M. Shkir, S. AlFaify, Design and fabrication of graphene anchored CeO2 hybrid nanocomposite electrodes for high performance energy storage device applications. Inorg. Chem. Commun. 132, 108838 (2021)

    Article  CAS  Google Scholar 

  29. R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of MnCo2O4 nanoflakes@ nanowires grown on Ni foam: Design, fabrication and applications in electrochemical energy storage. J. Alloy. Compd. 811, 152084 (2019)

    Article  CAS  Google Scholar 

  30. R. BoopathiRaja, M. Parthibavarman, A. Nishara Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum 165, 96–104 (2019)

    Article  CAS  Google Scholar 

  31. M. Parthibavarman, M. Karthik, S. Prabhakaran, Role of microwave on structural, morphological, optical and visible light photocatalytic performance of WO3 nanostructures. J. Clus. Sci. 30, 495–506 (2019)

    Article  CAS  Google Scholar 

  32. Y. Sharma, N. Sharma, G.S. Rao, B. Chowdari, Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim. Acta 53, 2380–2385 (2008)

    Article  CAS  Google Scholar 

  33. P.S. Yoo, D.A. Reddy, Y. Jia, S.E. Bae, S. Huh, C. Liu, Magnetic core-shell ZnFe2O4/ZnS nanocomposites for photocatalytic application under visible light. J. Colloid Interface Sci. 486, 136–143 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. X. Meng, Y. Zhuang, H. Tang, C. Lu, Hierarchical structured ZnFe2O4@SiO2@TiO2 composite for enhanced visible-light photocatalytic activity. J. Alloys Compd. 761, 15–23 (2018)

    Article  CAS  Google Scholar 

  35. M. Kuang, J. Zhang, W. Wang, J. Chen, R. Liu, S. Xie, J. Wang, Z. Ji, Synthesis of octahedral-like ZnO/ZnFe2O4 heterojunction photocatalysts with superior photocatalytic activity. Solid State Sci. 96, 105901 (2019)

    Article  CAS  Google Scholar 

  36. R. Tao, C. Zhao, C. Shao, X. Li, X. Li, J. Zhang, S. Yang, Y. Liu, Bi2WO6/ZnFe2O4 heterostructures nanofibers: enhanced visible-light photocatalytic activity and magnetically separable property. Mater. Res. Bull. 104, 124–133 (2018)

    Article  CAS  Google Scholar 

  37. V. Ramasamy Raja, A. Karthika, S. Lok Kirubahar, A. Suganthi, M. Rajarajan, Sonochemical synthesis of novel ZnFe2O4/CeO2 heterojunction with highly enhanced visible light photocatalytic activity. Solid State Ion. 332, 55–62 (2019)

    Article  CAS  Google Scholar 

  38. J. Su, Q. Shang, T. Guo, S. Yang, X. Wang, Q. Ma, H. Guan, F. Xu, S.C. Tsang, Construction of heterojunction ZnFe2O4/ZnO/Ag by using ZnO and Ag nanoparticles to modify ZnFe2O4 and its photocatalytic properties under visible light. Mater. Chem. Phys. 219, 22–29 (2018)

    Article  CAS  Google Scholar 

  39. N. Khadgi, Y. Li, A.R. Upreti, C. Zhang, W. Zhang, Y. Wang, D. Wang, Enhanced photocatalytic degradation of 17α-ethinylestradiol exhibited by multifunctional ZnFe2O4–Ag/rGO nanocomposite under visible light. Photochem. Photobiol. 92, 238–246 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. V. Etacheri, C. Di Valentin, J.S.D. Bahnemann, S.C. Pillai, Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J. Photochem. Photobiol. C 25, 1–29 (2015)

    Article  CAS  Google Scholar 

  41. J. Qian, C. Shen, J. Yan, F. Xi, X. Dong, J. Liu, Tailoring the electronic properties of graphene quantum dots by P doping and their enhanced performance in metal-free composite photocatalyst. J. Phys. Chem. C 122, 349–358 (2018)

    Article  CAS  Google Scholar 

  42. Y. Li, S. Li, Y. Wang, J. Wang, H. Liu, X. Liu, L. Wang, X. Liu, W. Xue, N. Ma, Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging. Phys. Chem. Chem. Phys. 19, 11631–11638 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Researchers supporting Project Number (RSP2024R247), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

JH, MS, study conceptualization and writing (original draft) the manuscript AMAM, WAO, data curation, formal analysis and writing (review & editing).

Corresponding author

Correspondence to M. Senthil.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the research work reported in this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemalatha, J., Senthil, M., Al-Mohaimeed, A.M. et al. Facile synthesis of activated carbon/ZnFe2O4 hybrid composite as an efficient photocatalyst for enhanced degradation of methylene blue (MB) and reactive red 120 dye under UV light. J IRAN CHEM SOC 21, 1317–1329 (2024). https://doi.org/10.1007/s13738-024-03000-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-024-03000-2

Keywords

Navigation