Skip to main content
Log in

Mn-Na2WO4-Ce/TiO2 catalyst promoted with Mg and Sr in the oxidative coupling of methane

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The activity and product selectivity of Na2WO4-MnO2-CeO2/TiO2 (MNTiCe) catalysts promoted by Sr and Mg in the oxidative coupling of methane (OCM) reaction was studied. The OCM reaction holds significance due to its potential for methane utilization, production of valuable chemicals, and environmental benefits. The Sr and Mg promoters are added simultaneously or after the impregnation of Ce to the catalyst. The catalyst activity results showed that the simultaneous addition of Sr and Mg promoters along with Ce provides more C2 selectivity for the catalyst. These results show that the C2 selectivity of the MNTiCe catalyst in the OCM reaction is improved by simultaneous Sr and Mg addition, in which the optimum loading of Sr is 0.75 wt% and the optimum loading of Mg is 0.25 wt%. According to the XPS results, the catalytic surface of catalyst loading with 0.75 wt% of Sr has a higher concentration of O2 species and increases the ability of the catalyst in the OCM reaction. The surface areas of all catalysts are lower than 10 m2/g which is suitable for OCM reaction and increased by the addition of Sr and Mg. According to the TPR results the catalyst reduction in simultaneously Sr and Mg loading catalysts are higher than in unpromoted catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Cruchade, I.C. Medeiros-Costa, N. Nesterenko, J.-P. Gilson, L. Pinard, A. Beuque et al., Catalytic routes for direct methane conversion to hydrocarbons and hydrogen: current state and opportunities. ACS Catal. 12, 14533–14558 (2022)

    Article  CAS  Google Scholar 

  2. A. Nakhaei Pour, M.R. Housaindokht, S.F. Tayyari, J. Zarkesh, Deactivation studies of nano-structured iron catalyst in Fischer-Tropsch synthesis. J. Nat. Gas Chem. 19, 333–340 (2010)

    Article  Google Scholar 

  3. Z. Zhu, W. Guo, Y. Zhang, C. Pan, J. Xu, Y. Zhu et al., Research progress on methane conversion coupling photocatalysis and thermocatalysis. Carbon Energy 3, 519–540 (2021)

    Article  CAS  Google Scholar 

  4. X. Li, C. Wang, J. Tang, Methane transformation by photocatalysis. Nat. Rev. Mater. 7, 617–632 (2022)

    Article  CAS  Google Scholar 

  5. Z. Mohammadkhani, S. Abedi, A. Morsali, A.R. Abbasi, M.E. Ebrahimzadeh, F. Babaei et al., Effects of pore size and surface area on CH4 and CO2 capture in mesostructured MIL-101. J. Iran. Chem. Soc. 16, 137–142 (2019)

    Article  CAS  Google Scholar 

  6. Z. Bonakchi, A. Nakhaei Pour, S. Soheili, Molecular simulation of methane on various g-C3N4 isomers: collision, adsorption, desorption, and diffusion studies. J. Iran. Chem. Soc. 19, 3649–3657 (2022)

    Article  CAS  Google Scholar 

  7. A. Nakhaei Pour, J. Karimi, S. Taghipoor, M. Gholizadeh, M. Hashemian, Fischer–Tropsch synthesis over CNT-supported cobalt catalyst: effect of magnetic field. J. Iran. Chem. Soc. 14, 1477–1488 (2017)

    Article  CAS  Google Scholar 

  8. A. Nakhaei Pour, M.R. Housaindokht, S.M. Kamali Shahri, Fischer–Tropsch synthesis over cobalt/CNTs catalysts: functionalized support and catalyst preparation effect on activity and kinetic parameters. Ind. Eng. Chem. Res. 57, 13639–13649 (2018)

    Article  CAS  Google Scholar 

  9. A. Nakhaei Pour, E. Hosaini, A. Tavasoli, A. Behroozsarand, F. Dolati, Intrinsic kinetics of Fischer–Tropsch synthesis over Co/CNTs catalyst: effects of metallic cobalt particle size. J. Nat. Gas Sci. Eng. 21, 772–778 (2014)

    Article  CAS  Google Scholar 

  10. A. Nakhaei Pour, M.R. Housaindokht, Study of activity, products selectivity and physico-chemical properties of bifunctional Fe/HZSM-5 Fischer–Tropsch catalyst: effect of catalyst shaping. J. Nat. Gas Sci. Eng. 14, 29–33 (2013)

    Article  CAS  Google Scholar 

  11. M. Abdollahi, H. Atashi, F.F. Tabrizi, M. Mansouri, Fischer–Tropsch study over impregnated silica-supported cobalt–iron nanocatalyst. J. Iran. Chem. Soc. 14, 245–256 (2017)

    Article  CAS  Google Scholar 

  12. N. Davoodian, A. Nakhaei Pour, M. Izadyar, A. Mohammadi, M. Vahidi, Fischer–Tropsch synthesis over a novel cobalt catalyst supported on UiO-66. J. Iran. Chem. Soc. 18, 1043–1050 (2021)

    Article  CAS  Google Scholar 

  13. M. Behrooz, M.H. Peyrovi, P.A. Nakhaei, Direct partial oxidation (dpo) of methane to higher hydrocarbons by modified H-ZSM5 catalyst. React. Kinet. Catal. Lett. 73, 127–133 (2001)

    Article  CAS  Google Scholar 

  14. A. Nakhaei Pour, M. Mousavi, Combined reforming of methane by carbon dioxide and water: particle size effect of Ni–Mg nanoparticles. Int. J. Hydrog. Energy 40, 12985–12992 (2015)

    Article  CAS  Google Scholar 

  15. M. Mousavi, A. Nakhaei Pour, Performance and structural features of LaNi0.5Co0.5O3 perovskite oxides for the dry reforming of methane: influence of the preparation method. New J. Chem. 43, 10763–10773 (2019)

    Article  CAS  Google Scholar 

  16. S.M.K. Shahri, P.A. Nakhaei, Ce-promoted Mn/Na2WO4/SiO2 catalyst for oxidative coupling of methane at atmospheric pressure. J. Nat. Gas Chem. 19, 47–53 (2010)

    Article  CAS  Google Scholar 

  17. Y. Gao, Y. Wei, W. Sun, G. Zhao, Y. Liu, Y. Lu, Insight into deactivation of the carbon-/sintering-resistant Ni@ Silicalite-1 for catalytic partial oxidation of methane to syngas. Fuel 320, 123892 (2022)

    Article  CAS  Google Scholar 

  18. H. Yang, R. Yu, Y. Fang, J. Yao, Y. Gan, J. Chen et al., Singly dispersed Ir1Ti3 bimetallic site for partial oxidation of methane at high temperature. Appl. Surf. Sci. 599, 153863 (2022)

    Article  CAS  Google Scholar 

  19. M. Pourali, J.A. Esfahani, H. Jahangir, A. Farzaneh, K.C. Kim, Ammonia decomposition in a porous catalytic reactor to enable hydrogen storage: numerical simulation, machine learning, and response surface methodology. J. Energy Storage 55, 105804 (2022)

    Article  Google Scholar 

  20. S. Carlotto, The catalytic performance of pure, doped, and reduced-doped SrTiO3 perovskite surfaces for oxidative coupling of methane. Appl. Surf. Sci. 602, 154376 (2022)

    Article  CAS  Google Scholar 

  21. H. Wang, R. Schmack, S. Sokolov, E.V. Kondratenko, A. Mazheika, R. Kraehnert, Oxide-supported carbonates reveal a unique descriptor for catalytic performance in the oxidative coupling of methane (OCM). ACS Catal. 12, 9325–9338 (2022)

    Article  CAS  Google Scholar 

  22. S. Damasceno, F.J. Trindade, F.C. Fonseca, D.Z. de Florio, A.S. Ferlauto, Oxidative coupling of methane in chemical looping design. Fuel Process. Technol. 231, 107255 (2022)

    Article  CAS  Google Scholar 

  23. R.S. Pal, S. Rana, S.K. Sharma, R. Khatun, D. Khurana, T.S. Khan et al., Enhancement of oxygen vacancy sites of La2xMxCe2O7δ (M= Ca, Ba, Sr) catalyst for the low temperature oxidative coupling of methane: a combined DFT and experimental study. Chem. Eng. J. 458, 141379 (2023)

    Article  Google Scholar 

  24. S. Sourav, Y. Wang, D. Kiani, J. Baltrusaitis, R.R. Fushimi, I.E. Wachs, New mechanistic and reaction pathway insights for oxidative coupling of methane (OCM) over supported Na2WO4/SiO2 catalysts. Angew. Chem. Int. Ed. 60, 21502–21511 (2021)

    Article  CAS  Google Scholar 

  25. Y. Chen, X. Mu, X. Luo, K. Shi, G. Yang, T. Wu, Catalytic conversion of methane at low temperatures: a critical review. Energ. Technol. 8, 1900750 (2020)

    Article  CAS  Google Scholar 

  26. L. Hu, D. Pinto, A. Urakawa, Catalytic oxidative coupling of methane: heterogeneous or homogeneous reaction? ACS Sustain. Chem. Eng. (2023). https://doi.org/10.1021/acssuschemeng.3c02088

    Article  PubMed  PubMed Central  Google Scholar 

  27. B.L. Farrell, S. Linic, Oxidative coupling of methane over mixed oxide catalysts designed for solid oxide membrane reactors. Catal. Sci. Technol. 6, 4370–4376 (2016)

    Article  CAS  Google Scholar 

  28. S. Pak, P. Qiu, J.H. Lunsford, Elementary reactions in the oxidative coupling of methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO catalysts. J. Catal. 179, 222–230 (1998)

    Article  CAS  Google Scholar 

  29. S. Arndt, T. Otremba, U. Simon, M. Yildiz, H. Schubert, R. Schomäcker, Mn–Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? Appl. Catal. A Gen. 425, 53–61 (2012)

    Article  Google Scholar 

  30. S. Arndt, G. Laugel, S. Levchenko, R. Horn, M. Baerns, M. Scheffler et al., A critical assessment of Li/MgO-based catalysts for the oxidative coupling of methane. Catal. Rev. 53, 424–514 (2011)

    Article  CAS  Google Scholar 

  31. T.W. Elkins, H.E. Hagelin-Weaver, Characterization of Mn–Na2WO4/SiO2 and Mn–Na2WO4/MgO catalysts for the oxidative coupling of methane. Appl. Catal. A: Gen. 497, 96–106 (2015)

    Article  CAS  Google Scholar 

  32. V. Jodaian, M. Mirzaei, Ce–promoted Na2WO4/TiO2 catalysts for the oxidative coupling of methane. Inorg. Chem. Commun. 100, 97–100 (2019)

    Article  CAS  Google Scholar 

  33. P. Wang, G. Zhao, Y. Liu, Y. Lu, TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst for oxidative coupling of methane: solution combustion synthesis and MnTiO3-dependent low-temperature activity improvement. Appl. Catal. A: Gen. 544, 77–83 (2017)

    Article  CAS  Google Scholar 

  34. P. Kidamorn, W. Tiyatha, T. Chukeaw, C. Niamnuy, M. Chareonpanich, H. Sohn et al., Synthesis of value-added chemicals via oxidative coupling of methanes over Na2WO4–TiO2–MnOx/SiO2 catalysts with alkali or alkali earth oxide additives. ACS Omega 5, 13612–13620 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. G.J. Kim, J.T. Ausenbaugh, H.T. Hwang, Effect of TiO2 on the performance of Mn/Na2WO4 catalysts in oxidative coupling of methane. Ind. Eng. Chem. Res. 60, 3914–3921 (2021)

    Article  CAS  Google Scholar 

  36. B.M. Sollier, M. Bonne, N. Khenoussi, L. Michelin, E.E. Miró, L.E. Gómez et al., Synthesis and characterization of electrospun nanofibers of Sr-La-Ce oxides as catalysts for the oxidative coupling of methane. Ind. Eng. Chem. Res. 59, 11419–11430 (2020)

    Article  CAS  Google Scholar 

  37. V.J. Ferreira, P. Tavares, J.L. Figueiredo, J.L. Faria, Effect of Mg, Ca, and Sr on CeO2 based catalysts for the oxidative coupling of methane: investigation on the oxygen species responsible for catalytic performance. Ind. Eng. Chem. Res. 51, 10535–10541 (2012)

    Article  CAS  Google Scholar 

  38. F. Cheng, J. Yang, L. Yan, J. Zhao, H. Zhao, H. Song et al., Effect of calcination temperature on the characteristics and performance of solid acid WO3/TiO2-supported lithium–manganese catalysts for the oxidative coupling of methane. Eur. J. Inorg. Chem. 2019, 1236–1242 (2019)

    Article  CAS  Google Scholar 

  39. W. Tiyatha, T. Chukeaw, S. Sringam, T. Witoon, M. Chareonpanich, G. Rupprechter et al., Oxidative coupling of methane—comparisons of MnTiO3–Na2WO4 and MnOx–TiO2–Na2WO4 catalysts on different silica supports. Sci. Rep. 12, 2595 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S. Ganeshan, P. Ramasundari, A. Elangovan, G. Arivazhagan, R. Vijayalakshmi, Synthesis and characterization of MnO2 nanoparticles: study of structural and optical properties. Int. J. Sci. Res. Phys. Appl. Sci. 5, 5–8 (2017)

    Google Scholar 

  41. F. Soleimani, M. Salehi, A. Gholizadeh, Comparing catalytic activity of MgMnO3 and SrMnO3 nanocatalyst for synthesis of polyhydroquinoline and new derivatives via Hantzsch reaction. Iran. J. Sci. Technol. Trans. A Sci. 44(4), 1011–1023 (2020)

    Article  Google Scholar 

  42. B. Yan, L. Lin, J. Wu, F. Lei, Photoluminescence of rare earth phosphors Na0.5Gd0.5WO 4: RE3+ and Na0.5Gd0.5(Mo0.75W0.25)O4: RE3+ (RE= Eu, Sm, Dy). J. Fluoresc. 21, 203–211 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. F. Esteban-Betegón, C. Zaldo, C. Cascales, Hydrothermal Yb3+-doped NaGd(WO4)2 nano-and micrometer-sized crystals with preserved photoluminescence properties. Chem. Mater. 22, 2315–2324 (2010)

    Article  Google Scholar 

  44. G. Rajakumar, A.A. Rahuman, S.M. Roopan, V.G. Khanna, G. Elango, C. Kamaraj et al., Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 91, 23–29 (2012)

    Article  CAS  Google Scholar 

  45. M. Zhao, S. Ke, H. Wu, W. Xia, H. Wan, Flower-like Sr-La2O3 microspheres with hierarchically porous structures for oxidative coupling of methane. Ind. Eng. Chem. Res. 58, 22847–22856 (2019)

    Article  CAS  Google Scholar 

  46. D.D. Petrolini, F.F. Marcos, A.F. Lucrédio, V.R. Mastelaro, J.M. Assaf, E.M. Assaf, Exploiting oxidative coupling of methane performed over La2(Ce1–xMgx)2O7−δ catalysts with disordered defective cubic fluorite structure. Catal. Sci. Technol. 11, 4471–4481 (2021)

    Article  CAS  Google Scholar 

  47. Y. Gambo, A. Jalil, S. Triwahyono, A. Abdulrasheed, Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: a review. J. Ind. Eng. Chem. 59, 218–229 (2018)

    Article  CAS  Google Scholar 

  48. P. Wang, G. Zhao, Y. Wang, Y. Lu, MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst. Sci. Adv. 3, e1603180 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  49. S. Gu, H.-S. Oh, J.-W. Choi, D.J. Suh, J. Jae, J. Choi et al., Effects of metal or metal oxide additives on oxidative coupling of methane using Na2WO4/SiO2 catalysts: reducibility of metal additives to manipulate the catalytic activity. Appl. Catal. A Gen. 562, 114–119 (2018)

    Article  CAS  Google Scholar 

  50. J. Wu, S. Li, J. Niu, X. Fang, Mechanistic study of oxidative coupling of methane over Mn2O3 Na2WO4SiO2 catalyst. Appl. Catal. A Gen. 124, 9–18 (1995)

    Article  CAS  Google Scholar 

  51. Z-c. Jiang, H. Gong, S-b. Li. Methane activation over Mn2O3-Na2WO4/SiO2 catalyst and oxygen spillover. in Studies in Surface Science and Catalysis: Elsevier pp. 481–490 (1997)

Download references

Acknowledgements

The authors of this work appreciate the financial support of the Ferdowsi University of Mashhad Research Council, Mashhad, Iran (Grant No. 3/57039) and (OCM project No.23346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nakhaei Pour.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradkhani, F., Nakhaei Pour, A. & Salimi, A. Mn-Na2WO4-Ce/TiO2 catalyst promoted with Mg and Sr in the oxidative coupling of methane. J IRAN CHEM SOC 20, 2757–2766 (2023). https://doi.org/10.1007/s13738-023-02873-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02873-z

Keywords

Navigation