Skip to main content
Log in

The promotional effects of Mn on Ni/SiO2 catalysts for CO methanation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The Mn promoted Ni catalysts were developed and applied in CO methanation reaction. The 10%Ni/SiO2 catalyst exhibits poor initial CO conversion (32.8%) and rapid deactivation with the highest methane selectivity during CO methanation reaction. In contrast, the Mn 4%Mn-10%Ni/SiO2 catalyst shows dramatically increased initial CO conversion, which is up to 94.5% with 90.0% methane selectivity. Besides, the apparent activation energy, Ea value, of 4%Mn-10%Ni/SiO2 was calculated to be 73.1 kJ/mol according to Arrhenius equation, which is much lower than that of 10%Ni/SiO2 catalyst as 139.1 kJ/mol. Based on various characterization results, including in situ XPS and in situ CO-DRIFTS, it is found that the added Mn significantly improves the dispersion of the supported nickel, suppresses the sintering of nickel particles and forms more adsorbed CO species of three-fold carbonyl species, resulting in higher CO conversion and good stability during CO methanation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu DC, Gao JJ, Ping Y, Jia LH, Gunawan P, Zhong ZY, Xu GW, Gu FN, Su FB (2012) Enhanced Investigation of CO Methanation over Ni/Al2O3 catalysts for synthetic natural gas production. Ind Eng Chem Res 51:4875–4886

    Article  CAS  Google Scholar 

  2. Wang H, Fang YZ, Liu Y, Bai X (2012) Perovskite LaFeO3 supported bi-metal catalyst for syngas methanation. J Nat Gas Chem 6:745–752

    Article  Google Scholar 

  3. Barrientos J, Lualdi M, Boutonnet M (2014) Deactivation of supported nickel catalysts during CO methanation. Appl Catal A 486:143–149

    Article  CAS  Google Scholar 

  4. Italiano C, Llorca J, Pino L, Ferraro M, Antonucci V, Vita A (2020) CO and CO2 methanation over Ni catalysts supported on CeO2, Al2O3 and Y2O3 oxides. Appl Catal B: Environ 264:118494

    Article  CAS  Google Scholar 

  5. Lin XH, Yang K, Si RR, Chen X, Dai WX, Fu XZ (2014) Photo-assisted catalytic methanation of CO in H2-rich stream over Ru/TiO2. Appl Catal B 147:585–591

    Article  CAS  Google Scholar 

  6. Liu JX, Su HY, Li WX (2013) Structure sensitivity of CO methanation on Co (0001), (1012) and (1120) surfaces: density functional theory calculations. Catal Today 215:36–42

    Article  CAS  Google Scholar 

  7. Weatherbee GD, Bartholomew CH (1982) Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. J Catal 77:460–472

    Article  CAS  Google Scholar 

  8. Guo X, Traitangwong A, Hu M, Zuo C, Meeyoo V, Peng Z, Li C (2018) Carbon dioxide methanation over nickel-based catalysts supported on various mesoporous material. Energy Fuels 32:3681–3689

    Article  CAS  Google Scholar 

  9. Aziz MAA, Jalil AA, Triwahyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR (2014) Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Appl Catal B: Environ 147:359–368

    Article  CAS  Google Scholar 

  10. Aziz MAA, Jalil AA, Triwahyono S, Ahmad A (2015) CO2 methanation over heterogeneous catalysts: recent progress and future prospects. Green Chem 17:2647–2663

    Article  CAS  Google Scholar 

  11. Chen Y, Qiu B, Liu Y, Zhang Y (2020) An active and stable nickel-based catalyst with embedment structure for CO2 methanation. Appl Catal B: Environ 269:118801

    Article  CAS  Google Scholar 

  12. Hu CW, Yao J, Yang HQ, Chen Y, Tian AM (1997) On the inhomogeneity of low nickel loading methanation catalyst. J Catal 166:1–7

    Article  CAS  Google Scholar 

  13. Hwang S, Lee J, Hong UG, Seo JG, Jung JC, Koh DJ, Lim H, Byun C, Song IK (2011) Methane production from carbon monoxide and hydrogen over nickel–alumina xerogel catalyst: effect of nickel content. J Ind Eng Chem 17:154–157

    Article  CAS  Google Scholar 

  14. GaoJ JC, Li J, Zhang M, Gu F, Xu G, Zhong Z, Su F (2013) Effect of nickel nanoparticle size in Ni/α-Al2O3 on CO methanation reaction for the production of synthetic natural gas. Catal Sci Technol 3:2009–2015

    Article  Google Scholar 

  15. Munnik P, Velthoen ME, de Jongh PE, de Jong KP, Gommes CJ (2014) Nanoparticle growth in supported nickel catalysts during methanation reaction—larger is better. Angew Chem Int Ed 126:9647–9651

    Article  Google Scholar 

  16. Deleitenburg C, Trovarelli A (1995) Metal-support interactions in Rh/CeO2, Rh/TiO2, and Rh/Nb2O5 catalysts as inferred from CO2 methanation activity. J Catal 156:171–174

    Article  CAS  Google Scholar 

  17. Vannice MA, Wang SY, Moon SH (1981) The effect of SMSI (strong metal-support interaction) behavior on CO adsorption and hydrogenation on Pd catalysts: I. IR spectra of adsorbed CO prior to and during reaction conditions. J Catal 71:152–166

    Article  CAS  Google Scholar 

  18. AzizMAA JAA, Triwahyono S, Sidik SM (2014) Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles. Appl Catal A 486:115–122

    Article  Google Scholar 

  19. Qin Z, Ren J, Miao M, Li Z, Lin J, Xie KC (2015) The catalytic methanation of coke oven gas over Ni-Ce/Al2O3 catalysts prepared by microwave heating: Effect of amorphous NiO formation. Appl Catal B: Environ 164:18–30

    Article  CAS  Google Scholar 

  20. Li XC, Hu QH, Yang YF, Wang Y, He F (2012) Studies on stability and coking resistance of Ni/BaTiO3–Al2O3 catalysts for lower temperature dry reforming of methane (LTDRM). Appl Catal A: Gen 413:163–169

    Google Scholar 

  21. Lv X, Chen JF, Tan Y, Zhang Y (2012) A highly dispersed nickel supported catalyst for dry reforming of methane. Catal Commun 20:6–11

    Article  CAS  Google Scholar 

  22. Agnelli M, Kolb M, Mirodatos C (1994) Co Hydrogenation on a nickel catalyst: 1. Kinetics and modeling of a low-temperature sintering process. J Catal 148:9–21

    Article  CAS  Google Scholar 

  23. Shen WM, Dumesic JA, Hill CG (1981) Criteria for stable Ni particle size under methanation reaction conditions: nickel transport and particle size growth via nickel carbonyl. J Catal 68:152–165

    Article  CAS  Google Scholar 

  24. Bai YX, Zhang JF, Yang GH, Zhang QD, Pan JX, Xie HJ, Liu XC, Han YZ, Tan YS (2018) Insight into the nanoparticle growth in supported Ni catalysts during the early stage of CO hydrogenation reaction: the important role of adsorbed CO molecules. ACS Catal 8:6367–6374

    Article  CAS  Google Scholar 

  25. Younas M, Kong LL, Bashir MJK, Nadeem H, Shehzad A, Sethupathi S (2016) Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2. Energy Fuels 30:8815–8831

    Article  CAS  Google Scholar 

  26. Beierlein D, Häussermann D, Pfeifer M, Schwarz T, Stöwe K, Traa Y, Klemm E (2019) Is the CO2 methanation on highly loaded Ni-Al2O3 catalysts really structure-sensitive. Appl Catal B: Environ 247:200–219

    Article  CAS  Google Scholar 

  27. Wu HC, Chang YC, Wu JH, Lin JH, Lin IK, Chen CS (2015) Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: the influence of particle size on selectivity and reaction pathway. Catal Sci Technol 5:4154–4163

    Article  CAS  Google Scholar 

  28. Liu J, Li CM, Wang F, He S, Chen H, Zhao YF, Wei M, Evans DG, Duan X (2013) Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst. Catal Sci Technol 3:2627–2633

    Article  CAS  Google Scholar 

  29. Zhou WG, Liu JY, WuX CJF, Zhang Y (2015) An effective Co/MnOx catalyst for forming light olefins via Fischer-Tropsch synthesis. Catal Commun 60:76–81

    Article  CAS  Google Scholar 

  30. Liu Y, Chen JF, Bao J, Zhang Y (2015) Manganese-modified Fe3O4 microsphere catalyst with effective active phase of forming light olefins from syngas. ACS Catal 5:3905–3909

    Article  CAS  Google Scholar 

  31. Morales F, de Groot FMF, Gijzeman OLJ, Mens AD, Stephan O, Weckhuysen BM (2005) Mn promotion effects in Co/TiO2 Fischer-Tropsch catalysts as investigated by XPS and STEM-EELS. J Catal 230:301–308

    Article  CAS  Google Scholar 

  32. Feltes TE, Espinosa-Alonso L, de Smit E, D’Souza L, Meyer RJ, Weckhuysen BM, Regalbuto JR (2010) Selective adsorption of manganese onto cobalt for optimized Mn/Co/TiO2 Fischer-Tropsch catalysts. J Catal 270:95–102

    Article  CAS  Google Scholar 

  33. Choudhury MBI, Ahmed S, Shalabi MA, Inui T (2006) Preferential methanation of CO in a syngas involving CO2 at lower temperature range. Appl Catal A: Gen 314:47–53

    Article  CAS  Google Scholar 

  34. Jia X, Zhang X, Rui N, Hu X, Liu CJ (2019) Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl Catal B: Environ 244:159–169

    Article  CAS  Google Scholar 

  35. Wang Y, Yao L, Wang YN, Wang SH, Zhao Q, Mao DH, Hu CW (2018) Low-temperature catalytic CO2 dry reforming of methane on Ni-Si/ZrO2 catalyst. ACS Catal 8:6495–6506

    Article  CAS  Google Scholar 

  36. Czekaj I, Loviat F, Raimondi F, Wambach J, Biollaz S, Wokaun A (2007) Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS). Appl Catal A: Gen 329:68–78

    Article  CAS  Google Scholar 

  37. Liu Y, Sheng W, Hou ZG, Zhang Y (2018) Homogeneous and highly dispersed Ni–Ru on a silica support as an effective CO methanation catalyst. RSC Adv 8:2123–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yan Y, Dai Y, Yang Y, Lapkin AA (2018) Improved stability of Y2O3 supported Ni catalysts for CO2 methanation by precursor-determined metal-support interaction. Appl Catal B: Environ 237:504–512

    Article  CAS  Google Scholar 

  39. Vogt C, Groeneveld E, Kamsma G, Nachtegaal M, Lu L, Kiely C, Berben P, Meirer F, Weckhuysen B (2018) Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat Catal 1:127–134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of P. R. China (U20B2022, 52270096 and 22078006), Beijing Nova Program (Z201100006820022) and Bingtuan Science and Technology Program (2021DB006). The financial supports from National Energy Investment Group Corporation Limited (CF9300220001) and National Key Research and Development Program of China (2018YFE0106700) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3365 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Chen, Y., Wang, C. et al. The promotional effects of Mn on Ni/SiO2 catalysts for CO methanation. Reac Kinet Mech Cat 136, 587–601 (2023). https://doi.org/10.1007/s11144-023-02377-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02377-0

Keywords

Navigation