Skip to main content
Log in

Electrochemical behavior and voltammetric determination of nicardipine based on reduced graphene oxide/polydiallyl dimethylammonium chloride/nanosilver modified electrode

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Reduced graphene oxide/polydiallyl dimethylammonium chloride/silver nanoparticles (rGO/PDDA/AgNPs) composite material was fabricated, and characterized by transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). A sensitive electrochemical sensor was constructed based on rGO /PDDA/AgNPs hybrid modified glassy carbon electrode for the determination of nicardipine (NP). The electrochemical behavior of NP on this sensor was investigated by cyclic voltammetry (CV). The measurement conditions such as supporting electrolyte and scanning speed were also optimized. Under optimized conditions, this proposed sensor showed a good linear relationship between the peak current and the concentration of NP in the range of 1.0 × 10–7 ~ 1.2 × 10–4 M, and the detection limit was 3.3 × 10–8 M. The possible interference of different compounds on the determination of NP was investigated in detail. The recovery of NP was 98.0 ~ 104.1%, which indicated that the composite modified electrode had high accuracy. This electrochemical method is low cost, sensitive, and can be applied to the determination of NP in drugs or preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Zarei, L. Fatemi, K. Kor, J. Anal. Chem. 70, 615 (2015)

    Article  CAS  Google Scholar 

  2. D.A. Stopher, A.P. Beresford, P.V. Macrae, M.J. Humphrey, J. Cardiovasc. Pharmacol. 12, S55 (1988)

    Article  CAS  PubMed  Google Scholar 

  3. S.M. Al-Ghannam, A.M. Al-Olyan, Cent. Eur. J. Chem. 6, 222 (2008)

    CAS  Google Scholar 

  4. Z. Zhang, X. Zhang, F. Li, SCIENCE CHINA Chem. 53, 1183 (2010)

    Article  CAS  Google Scholar 

  5. X. Wei, GengliangYanga. Li Qi, Yi Chen, Talanta 77, 1197 (2009)

    CAS  Google Scholar 

  6. S.M. Al-Ghannam, A.M. Al-Olayan, Arab. J. Chem. 12, 1983 (2019)

    Article  CAS  Google Scholar 

  7. N. Yamane, T. TakamI, Z. Tozuka, Y. Sugiyama, A. Yamazaki, Y. Kumagai, Drug Metab Pharmacokinet 24, 389 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. M. Qi, P. Wang, X. Jin, J. Chromatogr. B 830, 81 (2006)

    Article  CAS  Google Scholar 

  9. J.A. Squella, Y. Borges, C. Celedon, P. Peredo, L.J. Nuñez-Vergara, Electroanalysis 3, 221 (1991)

    Article  CAS  Google Scholar 

  10. Y. Zhi, J.B. Hu, Q.L. Li, Q.Q. Huang, Chem. Res. Chin. Univ. 15, 128 (1999)

    Google Scholar 

  11. N. Rajabzadeh, A. Benvidi, M. Mazloum-Ardakani, Afsaneh Dehghani Firouzabadi, and Rasoul Vafazadeh. Electroanalysis 27, 2792 (2015)

    Article  CAS  Google Scholar 

  12. D.F. Báez, S. Bollo, J. Solid State Electrochem. 20, 1059 (2016)

    Article  Google Scholar 

  13. Y.L. Wei, A.T. Wang, Y.Y. Liu, Russ. J. Electrochem. 54, 1141 (2018)

    Article  CAS  Google Scholar 

  14. A. Benvidi, Mohammad Taghi Nafar, Shahriar Jahanbani, Marzieh Dehghan Tezerjani, Masoud Rezaeinasab, Sudabeh Dalirnasab. Mater. Sci. Eng. C 75, 1435 (2017)

    Article  CAS  Google Scholar 

  15. X.J. Zhu, J. Zhao, T.T. Jia, S.H. Li, N. Li, H.B. Hou, R.L. Zhong, Z. Fan, M.J. Guo, Carbohydr. Polym. 209, 258 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. Y.-H. Li, Y. Ji, B.-B. Ren, L.-N. Jia, Q. Cai, X.-S. Liu, J. Iran. Chem. Soc. 16, 1903 (2019)

    Article  CAS  Google Scholar 

  17. Y. Lin, R. Chapman, M.M. Stevens, Adv. Funct. Mater. 25, 3183 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  18. R. Yang, X. Ding, Y. Zhou, Anal. Methods 7, 436 (2015)

    Article  CAS  Google Scholar 

  19. G. Jie, L. Li, C. Chen, J. Xuan, J. Zhu, Biosens. Bioelectron. 24, 3352 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. A. Benvidi, A. Dehghani-Firouzabadi, M. Mazloum-Ardakani, Bi-Bi Fatemeh Mirjalili, Reza Zare. J. Electroanal. Chem. 736, 22 (2015)

    Article  CAS  Google Scholar 

  21. C.-L. Lee, H.-P. Chiou, C.-M. Syu, C.-C. Wu, Electrochem. Commun. 12, 1609 (2010)

    Article  CAS  Google Scholar 

  22. J. Wang, Y. Li, D. Pan, H. Han, P. Zhang, Microchem. J. 164, 105965 (2021)

    Article  CAS  Google Scholar 

  23. H.R. Zare, F. Jahangiri-Dehaghani, Z. Shekari, A. Benvidi, Appl. Surf. Sci. 375, 169 (2016)

    Article  CAS  Google Scholar 

  24. A.T. Wang, Y.L. Wei, Y.G. Wang, D. Wang, X.R. Li, Physical Testing and Chemical Analysis (Part B Chemical Analysis) 55, 1055 (2019)

    CAS  Google Scholar 

  25. Y.L. Wei, A.T. Wang, L. Wang, Int. J. Electrochem. Sci. 15, 12599 (2020)

    Article  CAS  Google Scholar 

  26. V.K. Gupta, B. Sethi, R.A. Sharma, S. Agarwal, A. Bharti, J. Mol. Liq. 177, 114 (2013)

    Article  CAS  Google Scholar 

  27. R.S. Nicholson, I. Shain, Anal. Chem. 36, 706 (1964)

    Article  CAS  Google Scholar 

  28. S. Karthikeyan, V.K. Gupta, R. Boopathy, A. Titus, G. Sekaran, J. Mol. Liq. 173, 153 (2012)

    Article  CAS  Google Scholar 

  29. A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications (John Wiley and Sons Inc, New York, 2001), pp.236–237

    Google Scholar 

  30. F. Anson, Anal. Chem. 36, 932 (1964)

    Article  CAS  Google Scholar 

  31. E. Laviron, J. Electroanal. Chem. 101, 19 (1979)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Natural Science Key Foundation of Henan Province Universities of China (No. 17A150038), Henan Province Science and Technology Research Program Project, China (No. 232102320080), Henan Provincial Department of Education, China (23B150019).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by AW and LW. The first draft of the manuscript was written by YW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Its publication has been approved by all co-authors.

Corresponding author

Correspondence to Yingliang Wei.

Ethics declarations

Conflict of interest

This research has been finished by all the authors in the lab of our school. It was supported by the grants from the Natural Science Key Foundation of Henan Province Universitiesof China (No.17A150038), the Skeleton Teacher Foundation of Henan Province Universities, China (No. 2009GGJS_123)

Consent of publication

The work described here has not been published before. It is not under consideration for publication anywhere else.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Wang, A. & Wang, L. Electrochemical behavior and voltammetric determination of nicardipine based on reduced graphene oxide/polydiallyl dimethylammonium chloride/nanosilver modified electrode. J IRAN CHEM SOC 20, 2679–2687 (2023). https://doi.org/10.1007/s13738-023-02865-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02865-z

Keywords

Navigation