Skip to main content
Log in

Cellulose acetate/SiO2-poly(2-Acrylamido-2-methylpropane sulfonic acid) hybrid nanofiltration membrane: application in removal of ceftriaxone sodium

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Abstract

Removal of ceftriaxone sodium antibiotic from water using cellulose acetate (CA) mixed matrix nanofiltration membranes was investigated in this work. Silica nanoparticles were functionalized with (3-aminopropyl)triethoxysilane (APTES). Then, the hydrophilic and negatively charged 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) monomer was grafted from the surface of the amino-functionalized silica nanoparticles via surface-initiated redox polymerization. Finally, CA/silica and CA/modified silica nanocomposite membranes were prepared via phase inversion method, and the rejection of ceftriaxone sodium was studied. Rejection ratios were about 90 and 96% for CA/silica and CA/modified silica membranes at pH 8, respectively, wherein both were higher compared to the neat CA membrane. In fact, in case of nanocomposite membranes, size exclusion and charge repulsion between negatively charged functional groups of the membrane and anionic groups of drug operated synergistically at alkaline pH values, and the pharmaceutical rejection was improved.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Košutić et al., Removal of antibiotics from a model wastewater by RO/NF membranes. Sep. Purif. Technol. 53(3), 244–249 (2007)

    Article  Google Scholar 

  2. A.A. Sadmani, R.C. Andrews, D.M. Bagley, Impact of natural water colloids and cations on the rejection of pharmaceutically active and endocrine disrupting compounds by nanofiltration. J. Membr. Sci. 450, 272–281 (2014)

    Article  CAS  Google Scholar 

  3. L. Jurecska et al., Reprint of “Characterization of cyclodextrin containing nanofilters for removal of pharmaceutical residues”. J. Pharm. Biomed. Anal. 106, 124–128 (2015)

    Article  CAS  Google Scholar 

  4. Y.-L. Lin, C.-H. Lee, Elucidating the rejection mechanisms of PPCPs by nanofiltration and reverse osmosis membranes. Ind. Eng. Chem. Research 53(16), 6798–6806 (2014)

    Article  CAS  Google Scholar 

  5. A. Vona et al., Comparison of different removal techniques for selected pharmaceuticals. J. Water Process Eng. 5, 48–57 (2015)

    Article  Google Scholar 

  6. N. Le-Minh et al., Fate of antibiotics during municipal water recycling treatment processes. Water Res. 44(15), 4295–4323 (2010)

    Article  CAS  Google Scholar 

  7. M. Homayoonfal, M.R. Mehrnia, Amoxicillin separation from pharmaceutical solution by pH sensitive nanofiltration membranes. Sep. Purif. Technol. 130, 74–83 (2014)

    Article  CAS  Google Scholar 

  8. X. Wei et al., Advanced treatment of a complex pharmaceutical wastewater by nanofiltration: membrane foulant identification and cleaning. Desalination 251(1), 167–175 (2010)

    Article  CAS  Google Scholar 

  9. A. Zhu et al., Recovery of clindamycin from fermentation wastewater with nanofiltration membranes. Water Res. 37(15), 3718–3732 (2003)

    Article  CAS  Google Scholar 

  10. M.B. Martínez et al., Separation of a high-value pharmaceutical compound from waste ethanol by nanofiltration. J. Ind. Eng. Chem. 18(5), 1635–1641 (2012)

    Article  Google Scholar 

  11. X.Q. Cheng et al., Nanofiltration membrane achieving dual resistance to fouling and chlorine for “green” separation of antibiotics. J. Membr. Sci. 493, 156–166 (2015)

    Article  CAS  Google Scholar 

  12. W. Zhang et al., Development and characterization of composite nanofiltration membranes and their application in concentration of antibiotics. Sep. Purif. Technol. 30(1), 27–35 (2003)

    Article  CAS  Google Scholar 

  13. A. Ben-David et al., Facile surface modification of nanofiltration membranes to target the removal of endocrine-disrupting compounds. J. Membr. Sci. 357(1), 152–159 (2010)

    Article  CAS  Google Scholar 

  14. L.D. Nghiem, A.I. Schäfer, M. Elimelech, Pharmaceutical retention mechanisms by nanofiltration membranes. Enviro. Sci. Technol. 39(19), 7698–7705 (2005)

    Article  CAS  Google Scholar 

  15. R.M. Narbaitz et al., Pharmaceutical and personal care products removal from drinking water by modified cellulose acetate membrane: field testing. Chem. Eng. J. 225, 848–856 (2013)

    Article  CAS  Google Scholar 

  16. M. Sivakumar, D.R. Mohan, R. Rangarajan, Studies on cellulose acetate-polysulfone ultrafiltration membranes: II. Effect of additive concentration. J. Membr. Sci. 268(2), 208–219 (2006)

    Article  CAS  Google Scholar 

  17. N. Ghaemi et al., Fabrication of cellulose acetate/sodium dodecyl sulfate nanofiltration membrane: characterization and performance in rejection of pesticides. Desalination 290, 99–106 (2012)

    Article  CAS  Google Scholar 

  18. R. Abedini, S.M. Mousavi, R. Aminzadeh, A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: preparation, characterization and permeation study. Desalination 277(1), 40–45 (2011)

    Article  CAS  Google Scholar 

  19. A. Ahmad et al., Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis. Desalination 355, 1–10 (2015)

    Article  CAS  Google Scholar 

  20. H. Mahdavi, T. Shahalizade, Preparation, characterization and performance study of cellulose acetate membranes modified by aliphatic hyperbranched polyester. J. Membr. Sci. 473, 256–266 (2015)

    Article  CAS  Google Scholar 

  21. G. Arthanareeswaran, D. Mohan, M. Raajenthiren, Preparation, characterization and performance studies of ultrafiltration membranes with polymeric additive. J. Membr. Sci. 350(1), 130–138 (2010)

    Article  CAS  Google Scholar 

  22. G. Arthanareeswaran et al., Studies on performance of cellulose acetate and poly (ethelene glycol) blend ultrafiltration membranes using mixture design concept of design of experiments. Int. J. Polym. Mater. 55(12), 1133–1154 (2006)

    Article  CAS  Google Scholar 

  23. V. Souza, M. Quadri, Organic-inorganic hybrid membranes in separation processes: a 10-year review. Braz. J. Chem. Eng. 30(4), 683–700 (2013)

    Article  CAS  Google Scholar 

  24. N. Rakhshan, M. Pakizeh, The effect of functionalized SiO2 nanoparticles on the morphology and triazines separation properties of cellulose acetate membranes. J. Ind. Eng. Chem. 34, 51–60 (2016)

    Article  CAS  Google Scholar 

  25. G. Arthanareeswaran, T.S. Devi, M. Raajenthiren, Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I. Sep. Purif. Technol. 64(1), 38–47 (2008)

    Article  CAS  Google Scholar 

  26. C.H. Worthley et al., A study into the effect of POSS nanoparticles on cellulose acetate membranes. J. Membr. Sci. 431, 62–71 (2013)

    Article  CAS  Google Scholar 

  27. A. Shahtalebi, M. Sarrafzadeh, M.M. Rahmati, Application of nanofiltration membrane in the separation of amoxicillin from pharmaceutical wastewater. Iran. J. Environ. Health Sci. Eng. 8(2), 109 (2011)

    CAS  Google Scholar 

  28. C.M. Kee, A. Idris, Modification of cellulose acetate membrane using monosodium glutamate additives prepared by microwave heating. J. Ind. Eng. Chem. 18(6), 2115–2123 (2012)

    Article  CAS  Google Scholar 

  29. L. Ahmadian-Alam, M. Kheirmand, H. Mahdavi, Preparation, characterization and properties of PVDF-g-PAMPS/PMMA-co-PAMPS/silica nanoparticle as a new proton exchange nanocomposite membrane. Chem. Eng. J. 284, 1035–1048 (2016)

    Article  CAS  Google Scholar 

  30. P. Salarizadeh, M. Abdollahi, M. Javanbakht, Modification of silica nanoparticles with hydrophilic sulfonated polymers by using surface-initiated redox polymerization. Iran. Polym. J. 21(10), 661–668 (2012)

    Article  CAS  Google Scholar 

  31. A.K. Hołda, I.F. Vankelecom, Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J. Appl. Polymer Sci. 32(27), 42130–42147 (2015)

    Google Scholar 

  32. B. Van der Bruggen, J. Geens, C. Vandecasteele, Fluxes and rejections for nanofiltration with solvent stable polymeric membranes in water, ethanol and n-hexane. Chem. Eng. Sci. 57(13), 2511–2518 (2002)

    Article  Google Scholar 

  33. M. Naghsh et al., Separation of ethylene/ethane and propylene/propane by cellulose acetate–silica nanocomposite membranes. J. Membr. Sci. 423, 97–106 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, H., Bagherifar, R. Cellulose acetate/SiO2-poly(2-Acrylamido-2-methylpropane sulfonic acid) hybrid nanofiltration membrane: application in removal of ceftriaxone sodium. J IRAN CHEM SOC 15, 2839–2849 (2018). https://doi.org/10.1007/s13738-018-1470-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1470-4

Keywords

Navigation