Skip to main content
Log in

Synthesis of bimetallic/carbon nanocomposite and its application for phenol removal

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The research study goes through the development of Al/Mn impregnated multi-walled carbon nanotubes (MWCNTs) and its use in the adsorption of phenol from aqueous solution. The Al/Mn decorated CNTs (CAM) were characterized by different characterization techniques such as BET, XRD, SEM-EDX, TGA and Raman spectroscopy to study the porosity, mineralogy, surface texture, and thermal attributes of prepared adsorbent. The application of synthesized adsorbent for phenol removal was proved to be superior as compared to its raw counterpart for all experimental runs. The kinetics of adsorption process was followed by pseudo-second order model. The regression results of equilibrium data showed that the Sip’s isotherm model best fitted to experimental data. Thermodynamic analysis of phenol adsorption suggested that the pollutant removal process is feasible and exothermic in nature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.-H. Lin, R.-S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. J. Environ. Manag. 90(3), 1336–1349 (2009)

    Article  CAS  Google Scholar 

  2. J.C. Lazo-Cannata et al., Adsorption of phenol and nitrophenols by carbon nanospheres: effect of pH and ionic strength. Sep. Purif. Technol. 80(2), 217–224 (2011)

    Article  CAS  Google Scholar 

  3. H. Tahermansouri, Z. Dehghan, F. Kiani, Phenol adsorption from aqueous solutions by functionalized multiwalled carbon nanotubes with a pyrazoline derivative in the presence of ultrasound. RSC Adv. 5(55), 44263–44273 (2015)

    Article  CAS  Google Scholar 

  4. R. Seth, P. Singh, M. Mohan, R. Singh, R.S. Aswal, Monitoring of phenolic compounds and surfactants in water of Ganga Canal, Haridwar (India). Appl. Water Sci. 3(4), 717–720 (2013)

    Article  CAS  Google Scholar 

  5. M.E. Navgire, P. Gogoi, B. Mallesham, A. Rangaswamy, B.M. Reddy, M.K. Lande, β-Cyclodextrin supported MoO3–CeO2 nanocomposite material as an efficient heterogeneous catalyst for degradation of phenol. RSC Adv. 6(34), 28679–28687 (2016)

    Article  CAS  Google Scholar 

  6. S. Sharma, A. Bhattacharya, Drinking water contamination and treatment techniques. Appl. Water Sci. 7(3), 1043–1067 (2017)

    Article  CAS  Google Scholar 

  7. T. Sun et al., Preparation and coagulation performance of poly-ferric-aluminum-silicate-sulfate from fly ash. Desalination 268(1–3), 270–275 (2011)

    Article  CAS  Google Scholar 

  8. L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep. 2(3), 157–167 (2016)

    Article  CAS  Google Scholar 

  9. V.K. Gupta, A. Nayak, S. Agarwal, I. Tyagi, Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J. Colloid Interface Sci. 417, 420–430 (2014)

    Article  CAS  Google Scholar 

  10. N.T. Abdel-Ghani, G.A. El-Chaghaby, F.S. Helal, Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J. Adv. Res. 6(3), 405–415 (2015)

    Article  CAS  Google Scholar 

  11. N. Chaouati, A. Soualah, M. Chater, Adsorption of phenol from aqueous solution onto zeolites Y modified by silylation. Comptes Rendus Chim. 16(3), 222–228 (2013)

    Article  CAS  Google Scholar 

  12. K. Xie, C. Shan, J. Qi, S. Qiao, Q. Zeng, L. Zhang, Study of adsorptive removal of phenol by MOF-5. Desalin. Water Treat. 54(3), 654–659 (2015)

    Article  CAS  Google Scholar 

  13. M. Alam Khan, A. Ahmad, Kinetics and thermodynamic studies of phenol adsorption on nanocomposite. Desalin. Water Treat. 57(24), 11255–11265 (2016)

    Article  CAS  Google Scholar 

  14. G.Z. Kyzas, K.A. Matis, Nanoadsorbents for pollutants removal: a review. J. Mol. Liq. 203, 159–168 (2015)

    Article  CAS  Google Scholar 

  15. K. Osler, D. Dheda, J. Ngoy, N. Wagner, M.O. Daramola, Synthesis and evaluation of carbon nanotubes composite adsorbent for CO2 capture: a comparative study of CO2 adsorption capacity of single-walled and multi-walled carbon nanotubes. Int. J. Coal Sci. Technol. 4(1), 41–49 (2017)

    Article  CAS  Google Scholar 

  16. H. Alijani, Z. Shariatinia, Synthesis of high growth rate SWCNTs and their magnetite cobalt sulfide nanohybrid as super-adsorbent for mercury removal. Chem. Eng. Res. Des. 129, 132–149 (2018)

    Article  CAS  Google Scholar 

  17. O.G. Apul, T. Karanfil, Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review. Water Res. 68, 34–55 (2015)

    Article  CAS  Google Scholar 

  18. M.I. Mohammed, A.A. Abdul Razak, D.A. Hussein Al-Timimi, Modified multiwalled carbon nanotubes for treatment of some organic dyes in wastewater. Adv. Mater. Sci. Eng. 2014, 1–10 (2014)

    Article  Google Scholar 

  19. K. Anitha, S. Namsani, J.K. Singh, Removal of heavy metal ions using a functionalized single-walled carbon nanotube: a molecular dynamics study. J. Phys. Chem. A 119(30), 8349–8358 (2015)

    Article  CAS  Google Scholar 

  20. Y.-X. Yao, H.-B. Li, J.-Y. Liu, X.-L. Tan, J.-G. Yu, Z.-G. Peng, Removal and adsorption of p-nitrophenol from aqueous solutions using carbon nanotubes and their composites. J. Nanomater. 2014, 1–9 (2014)

    Google Scholar 

  21. P.E. Diaz-Flores, F. López-Urı´as, M. Terrones, J.R. Rangel-Mendez, Simultaneous adsorption of Cd2+ and phenol on modified N-doped carbon nanotubes: experimental and DFT studies. J. Colloid Interface Sci. 334(2), 124–131 (2009)

    Article  CAS  Google Scholar 

  22. B. Abussaud et al., Sorption of phenol from waters on activated carbon impregnated with iron oxide, aluminum oxide and titanium oxide. J. Mol. Liq. 213, 351–359 (2016)

    Article  CAS  Google Scholar 

  23. H.A. Asmaly et al., Evaluation of micro- and nano-carbon-based adsorbents for the removal of phenol from aqueous solutions. Toxicol. Environ. Chem. 97(9), 1164–1179 (2015)

    Article  CAS  Google Scholar 

  24. H.A. Asmaly, B. Abussaud, Ihsanullah, T.A. Saleh, V.K. Gupta, M.A. Atieh, Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: From synthesis to enhanced removal of phenol. J. Saudi Chem. Soc. 19(5), 511–520 (2015)

    Article  Google Scholar 

  25. A. Abbas, B.A. Abussaud, Ihsanullah, N.A. Al-Baghli, M. Khraisheh, M.A. Atieh, Benzene removal by iron oxide nanoparticles decorated carbon nanotubes. J. Nanomater. 2016, 1–10 (2016)

    Article  Google Scholar 

  26. A. Abbas, B.A. Abussaud, Ihsanullah, N.A. Al-Baghli, H.H. Redhwi, Adsorption of toluene and paraxylene from aqueous solution using pure and iron oxide impregnated carbon nanotubes: kinetics and isotherms study. Bioinorg. Chem. Appl. 2017, 1–11 (2017)

    Article  Google Scholar 

  27. Ihsanullah et al., Novel anti-microbial membrane for desalination pretreatment: a silver nanoparticle-doped carbon nanotube membrane. Desalination 376, 82–93 (2015)

    Article  CAS  Google Scholar 

  28. M.I. Qureshi, F. Patel, N. Al-Baghli, B. Abussaud, B.S. Tawabini, T. Laoui, A comparative study of raw and metal oxide impregnated carbon nanotubes for the adsorption of hexavalent chromium from aqueous solution. Bioinorg. Chem. Appl. 2017, 1–10 (2017)

    Article  Google Scholar 

  29. D. Kang, X. Yu, M. Ge, F. Xiao, H. Xu, ScienceDirect Novel Al-doped carbon nanotubes with adsorption and coagulation promotion for organic pollutant removal. J. Environ. Sci. 4, 1–12 2016

    Google Scholar 

  30. N. Chaudhary, C. Balomajumder, B. Agrawal, V.S. Jagati, Removal of phenol using fly ash and impregnated fly ash: an approach to equilibrium, kinetic, and thermodynamic study. Sep. Sci. Technol. 50(5), 690–699 (2015)

    Article  CAS  Google Scholar 

  31. E. Saputra, S. Muhammad, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation. Environ. Sci. Technol. 47(11), 5882–5887 (2013)

    Article  CAS  Google Scholar 

  32. Y. Dong, H. Yang, K. He, S. Song, A. Zhang, β-MnO2 nanowires: a novel ozonation catalyst for water treatment. Appl. Catal. B Environ. 85(3–4), 155–161 (2009)

    Article  CAS  Google Scholar 

  33. O. Moradi, A. Fakhri, S. Adami, S. Adami, Isotherm, thermodynamic, kinetics, and adsorption mechanism studies of ethidium bromide by single-walled carbon nanotube and carboxylate group functionalized single-walled carbon nanotube. J. Colloid Interface Sci. 395, 224–229 (2013)

    Article  CAS  Google Scholar 

  34. R. Khalid, Z. Aslam, A. Abbas, W. Ahmad, N. Ramzan, R. Shawabkeh, Adsorptive potential of Acacia nilotica based adsorbent for chromium (VI) from an aqueous phase. Chin. J. Chem. Eng. 26(3), 614–622 (2018)

    Article  Google Scholar 

  35. S.H. Javed, A. Zahir, A. Khan, S. Afzal, M. Mansha, Adsorption of Mordant Red 73 dye on acid activated bentonite: kinetics and thermodynamic study. J. Mol. Liq. 254, 398–405 (2018)

    Article  CAS  Google Scholar 

  36. N.G. Rincon-Silva, J.C. Moreno-Piraján, L.G. Giraldo, Thermodynamic study of adsorption of phenol, 4-chlorophenol, and 4-nitrophenol on activated carbon obtained from eucalyptus seed. J. Chem. 2015, 1–12 (2015)

    Article  Google Scholar 

  37. X. Cheng et al., Characterization of multiwalled carbon nanotubes dispersing in water and association with biological effects. J. Nanomater. 2011, 1–12 (2011)

    Google Scholar 

  38. A. Yurum, G. Karakas, Synthesis of Na-, Fe-, and Co-promoted TiO2/multiwalled carbon nanotube composites and their use as a photocatalyst. Turk. J. Chem. 41, 440–454 (2017)

    Article  CAS  Google Scholar 

  39. N. Abbas et al., Inexpensive sol-gel synthesis of multiwalled carbon nanotube-TiO2 hybrids for high performance antibacterial materials. Mater. Sci. Eng. C 68, 780–788 (2016)

    Article  CAS  Google Scholar 

  40. A. Zahir, Z. Aslam, M.S. Kamal, W. Ahmad, A. Abbas, R.A. Shawabkeh, Development of novel cross-linked chitosan for the removal of anionic Congo red dye. J. Mol. Liq. 244, 211–218 (2017)

    Article  CAS  Google Scholar 

  41. G.-C. Chen et al., Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II). Water Res. 43(9), 2409–2418 (2009)

    Article  CAS  Google Scholar 

  42. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60(3), 413–550 (2011)

    Article  CAS  Google Scholar 

  43. S. Yin, P.K. Shen, S. Song, S.P. Jiang, Functionalization of carbon nanotubes by an effective intermittent microwave heating-assisted HF/H2O2 treatment for electrocatalyst support of fuel cells. Electrochim. Acta 54(27), 6954–6958 (2009)

    Article  CAS  Google Scholar 

  44. A.M. Jastrzębska, E. Karwowska, A.R. Olszyna, A. Kunicki, Influence of bacteria adsorption on zeta potential of Al2O3 and Al2O3/Ag nanoparticles in electrolyte and drinking water environment studied by means of zeta potential. Surf. Coat. Technol. 271, 225–233 (2015)

    Article  Google Scholar 

  45. K. Pillay, E.M. Cukrowska, N.J. Coville, Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J. Hazard. Mater. 166(2–3), 1067–1075 (2009)

    Article  CAS  Google Scholar 

  46. M.C. Patterson et al., EPFR formation from phenol adsorption on Al2O3 and TiO2: EPR and EELS studies. Chem. Phys. 422, 277–282 (2013)

    Article  CAS  Google Scholar 

  47. H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 0, 3973–3993 (1960)

    Article  CAS  Google Scholar 

  48. O. Abdelwahab, N.K. Amin, Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: kinetics, isotherm and thermodynamic studies. Egypt. J. Aquat. Res. 39(4), 215–223 (2013)

    Article  Google Scholar 

  49. H.-T. Fan, C.-Y. Zhao, S. Liu, H. Shen, Adsorption characteristics of chlorophenols from aqueous solution onto graphene. J. Chem. Eng. Data 62(3), 1099–1105 (2017)

    Article  CAS  Google Scholar 

  50. M. Abdel Salam, R.C. Burk, Thermodynamics and kinetics studies of pentachlorophenol adsorption from aqueous solutions by multi-walled carbon nanotubes. Water Air Soil Pollut. 210(1–4), 101–111 (2010)

    Article  CAS  Google Scholar 

  51. Q. Fu et al., Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals. Appl. Surf. Sci. 255(8), 4551–4557 (2009)

    Article  CAS  Google Scholar 

  52. N.G. Rincón-Silva, J.C. Moreno-Piraján, L. Giraldo, Equilibrium, kinetics and thermodynamics study of phenols adsorption onto activated carbon obtained from lignocellulosic material (Eucalyptus Globulus labill seed). Adsorption 22(1), 33–48 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Chemical Engineering, University of Engineering and Technology Lahore for financial and technical support under Grant Number ORIC/101-ASRB/4451.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaheer Aslam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarin, S., Aslam, Z., Zahir, A. et al. Synthesis of bimetallic/carbon nanocomposite and its application for phenol removal. J IRAN CHEM SOC 15, 2689–2701 (2018). https://doi.org/10.1007/s13738-018-1457-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1457-1

Keywords

Navigation