Skip to main content
Log in

Preparation and characterization of CS/PAT/ MWCNT@MgAl-LDHs nanocomposite for Cd2+ removal and 4-nitrophenol reduction

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

The present study evaluated the performance of multiwalled carbon nanotube (MWCNT)@MgAl-layered double hydroxide (LDH) nanoparticles loaded on poly-2 aminothiazole (PAT)/chitosan (CS) matrix (CPML) to remove Cd2+ ions from aqueous solution. The removal efficiency of modified CS/PAT with MWCNT@MgAl-LDHs was increased significantly compared to pure CS/PAT. The influence of heavy metal ion concentration, pH, temperature, adsorbent dosage, and contact time on the adsorption was examined. The optimum conditions for the adsorption of Cd2+ ions were 25 0C with the adsorbent dosage of 0.06 g and initial concentration for adsorption of the Cd2+ 100 mg/L at pH = 8. The maximum adsorption capacity was measured to be 1106.19 mg/g. The values of thermodynamic parameters namely Gibbs free energy (ΔG°), entropy change (ΔS°), and enthalpy change (ΔH°) indicated the feasibility, spontaneity and the endothermic nature of the adsorption process, respectively. The pseudo-second-order kinetics and the Langmuir model were selected as the best models for the adsorption process. Also, CPML nanocomposite (NC) was successfully tested for p-nitrophenol (p-NP) reduction in the presence of NaBH4. The reaction was nearly completed in 6 min. The fabricated CPML-NC could be reused for three consecutive cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Some of the datasets analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Dinari M, Atabaki F, Pahnavar Z, Soltani R. Adsorptive removal properties of bivalent cadmium from aqueous solution using porous poly (N-2-methyl-4-nitrophenyl maleimide-maleic anhydride-methyl methacrylate) terpolymers. J Environ Chem Eng. 2020;8(6):104560.

    Article  CAS  Google Scholar 

  2. Georgouvelas D, Abdelhamid HN, Li J, Edlund U, Mathew AP. All-cellulose functional membranes for water treatment: Adsorption of metal ions and catalytic decolorization of dyes. Carbohyd Polym. 2021;264:118044.

    Article  CAS  Google Scholar 

  3. Morshedy AS, Galhoum AA, Aleem AAHA, El-din MTS, Okaba DM, Mostafa MS, et al. Functionalized aminophosphonate chitosan-magnetic nanocomposites for Cd (II) removal from aqueous solutions: Performance and mechanisms of sorption. Appl Surf Sci. 2021;561:150069.

    Article  CAS  Google Scholar 

  4. Yang Y, Zeng L, Lin Z, Jiang H, Zhang A. Adsorption of Pb2+, Cu2+ and Cd2+ by sulfhydryl modified chitosan beads. Carbohyd Polym. 2021;274:118622.

    Article  CAS  Google Scholar 

  5. Foroutan R, Peighambardoust SJ, Amarzadeh M, Korri AK, Peighambardoust NS, Ahmad A, et al. Nickel ions abatement from aqueous solutions and shipbuilding industry wastewater using ZIF-8-chicken beak hydroxyapatite. J Mol Liq. 2022;356:119003.

    Article  CAS  Google Scholar 

  6. Zhu S, Khan MA, Wang F, Bano Z, Xia M. Rapid removal of toxic metals Cu2+ and Pb2+ by amino trimethylene phosphonic acid intercalated layered double hydroxide: A combined experimental and DFT study. Chem Eng J. 2020;392:123711.

    Article  CAS  Google Scholar 

  7. Foroutan R, Peighambardoust SJ, Ghojavand S, Farjadfard S, Ramavandi B. Cadmium elimination from wastewater using potato peel biochar modified by ZIF-8 and magnetic nanoparticle. Colloid Interface Sci Commun. 2023;55:100723.

    Article  CAS  Google Scholar 

  8. Lan Z, Lin Y, Yang C. Lanthanum-iron incorporated chitosan beads for adsorption of phosphate and cadmium from aqueous solutions. Chem Eng J. 2022;448:137519.

    Article  CAS  Google Scholar 

  9. Dinari M, Dadkhah F. Swift reduction of 4-nitrophenol by easy recoverable magnetite-Ag/layered double hydroxide/starch bionanocomposite. Carbohyd Polym. 2020;228:115392.

    Article  Google Scholar 

  10. Karthikeyan P, Banu HAT, Meenakshi S. Synthesis and characterization of metal loaded chitosan-alginate biopolymeric hybrid beads for the efficient removal of phosphate and nitrate ions from aqueous solution. Int J Biol Macromol. 2019;130:407–18.

    Article  CAS  Google Scholar 

  11. Zhu S, Zhao J, Zhao N, Yang X, Chen C, Shang J. Goethite modified biochar as a multifunctional amendment for cationic Cd (II), anionic As (III), roxarsone, and phosphorus in soil and water. J Clean Prod. 2020;247:119579.

    Article  CAS  Google Scholar 

  12. Hosseini SS, Hamadi A, Foroutan R, Peighambardoust SJ, Ramavandi B. Decontamination of Cd2+ and Pb2+ from aqueous solution using a magnetic nanocomposite of eggshell/starch/Fe3O4. J Water Process Eng. 2022;48:102911.

    Article  Google Scholar 

  13. Bonyadi Z, Kumar PS, Foroutan R, Kafaei R, Arfaeinia H, Farjadfard S, et al. Ultrasonic-assisted synthesis of Populus alba activated carbon for water defluorination: application for real wastewater. Korean J Chem Eng. 2019;36:1595–603.

    Article  CAS  Google Scholar 

  14. Savari A, Hashemi S, Arfaeinia H, Dobaradaran S, Foroutan R, Mahvi AH, et al. Physicochemical characteristics and mechanism of fluoride removal using powdered zeolite-zirconium in modes of pulsed& continuous sonication and stirring. Adv Powder Technol. 2020;31(8):3521–32.

    Article  CAS  Google Scholar 

  15. Parastar M, Sheshmani S, Shokrollahzadeh S. Cross-linked chitosan into graphene oxide-iron (III) oxide hydroxide as nano-biosorbent for Pd (II) and Cd (II) removal. Int J Biol Macromol. 2021;166:229–37.

    Article  CAS  Google Scholar 

  16. de Souza JF, da Silva EC, Biajoli AF, Bonemann DH, Ribeiro AS, Fajardo AR. Alginate/Phosphine-Functionalized Chitosan Beads Towards the Removal of Harmful Metal Ions from Aqueous Medium. J Polym Environ. 2023;31(1):249–63.

    Article  Google Scholar 

  17. Taghizadeh A, Taghizadeh M, Jouyandeh M, Yazdi MK, Zarrintaj P, Saeb MR, et al. Conductive polymers in water treatment: A review. J Mol Liq. 2020;312:113447.

    Article  CAS  Google Scholar 

  18. Zou H, Wu D. Revisiting the synthesis of poly (2-aminothiazole) for removal of Hg (II) in aqueous solution. Eur Polymer J. 2020;125:109514.

    Article  CAS  Google Scholar 

  19. Chen S, Zang Z, Zhang S, Ouyang G, Han R. Preparation of MIL-100 (Fe) and multi-walled carbon nanotubes nanocomposite with high adsorption capacity towards Oxytetracycline from solution. J Environ Chem Eng. 2021;9(2):104780.

    Article  CAS  Google Scholar 

  20. Oliveira AR, Correia AA, Rasteiro MG. Heavy metals removal from aqueous solutions by multiwall carbon nanotubes: Effect of MWCNTs dispersion. Nanomaterials. 2021;11(8):2082.

    Article  CAS  Google Scholar 

  21. Yang YJ, Duan M, Yan C, Zhao D, Jiang C, Duan X, et al. Facile synthesis of CoFe-LDH/MWCNT/rGO nanocomposite as efficient bifunctional electrocatalysts for oxygen evolution and reduction. J Electroanal Chem. 2020;856:113697.

    Article  CAS  Google Scholar 

  22. Simari C, Lufrano E, Rehman MHU, Zhegur-Khais A, Haj-Bsoul S, Dekel DR, et al. Effect of LDH platelets on the transport properties and carbonation of anion exchange membranes. Electrochim Acta. 2022;403:139713.

    Article  CAS  Google Scholar 

  23. Jana A, Unni A, Ravuru SS, Das A, Das D, Biswas S, et al. In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: a case study with real life uranium alkaline leach liquor. Chem Eng J. 2022;428:131180.

    Article  CAS  Google Scholar 

  24. Rostami MS, Khodaei MM. Chitosan-based composite films to remove cationic and anionic dyes simultaneously from aqueous solutions: Modeling and optimization using RSM. Int J Biol Macromol. 2023;235:123723.

    Article  CAS  Google Scholar 

  25. Song Q, Gao J, Lin Y, Zhang Z, Xiang Y. Synthesis of cross-linking chitosan-PVA composite hydrogel and adsorption of Cu (II) ions. Water Sci Technol. 2020;81(5):1063–70.

    Article  CAS  Google Scholar 

  26. Zou L, Shao P, Zhang K, Yang L, You D, Shi H, et al. Tannic acid-based adsorbent with superior selectivity for lead (II) capture: Adsorption site and selective mechanism. Chem Eng J. 2019;364:160–6.

    Article  CAS  Google Scholar 

  27. Liu W, Wu X, Liu S, Cheng X, Zhang C. CNT@ LDH functionalized poly (lactic acid) membranes with super oil–water separation and real-time press sensing properties. Polym Compos. 2022;43(9):6548–59.

    Article  CAS  Google Scholar 

  28. Tu Q, Zhang J, Cai S, Zhang K, Zhan H, Huang S, et al. One-Step Preparation of NiV-LDH@ CNT Hierarchical Composite for Advanced Asymmetrical Supercapacitor. Adv Eng Mater. 2022;24(9):2101174.

    Article  CAS  Google Scholar 

  29. Mallakpour S, Behranvand V. Water sanitization by the elimination of Cd2+ using recycled PET/MWNT/LDH composite: morphology, thermal, kinetic, and isotherm studies. ACS Sustainable Chemistry & Engineering. 2017;5(7):5746–57.

    Article  CAS  Google Scholar 

  30. Shan R-r, Yan L-g, Yang K, Hao Y-f, Du B. Adsorption of Cd (II) by Mg–Al–CO3-and magnetic Fe3O4/Mg–Al–CO3-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies. J Hazardous Materials. 2015;299:42–9.

    Article  CAS  Google Scholar 

  31. Ji D, Liu Y, Wang X, Qiao Z, Yang J, Bai Z, et al. Removal of uranium from wastewater through Ni–Al-layered double hydroxide@ carbon nanotubes functionalized by polyethyleneimine. New J Chem. 2023;47(1):109–19.

    Article  CAS  Google Scholar 

  32. Li Z, Zeng H-Y, Cao X-J, Li H-B, Long Y-W, Feng B, et al. High-sensitive sensor for the simultaneous determination of phenolics based on multi-walled carbon nanotube/NiCoAl hydrotalcite electrode material. Microchim Acta. 2021;188(9):308.

    Article  CAS  Google Scholar 

  33. Tassanapukdee Y, Prayongpan P, Songsrirote K. Removal of heavy metal ions from an aqueous solution by CS/PVA/PVP composite hydrogel synthesized using microwaved-assisted irradiation. Environ Technol Innov. 2021;24:101898.

    Article  CAS  Google Scholar 

  34. Garnica-Palafox I, Estrella-Monroy H, Benítez-Martínez J, Bizarro M, Sánchez-Arévalo F. Influence of genipin and multi-walled carbon nanotubes on the dye capture response of CS/PVA hybrid hydrogels. J Polym Environ. 2022;30(11):4690–709.

    Article  CAS  Google Scholar 

  35. Panahi FH, Peighambardoust SJ, Davaran S, Salehi R. Development and characterization of PLA-mPEG copolymer containing iron nanoparticle-coated carbon nanotubes for controlled delivery of Docetaxel. Polymer. 2017;117:117–31.

    Article  Google Scholar 

  36. Foroutan R, Peighambardoust SJ, Mohammadi R, Peighambardoust SH, Ramavandi B. Cadmium ion removal from aqueous media using banana peel biochar/Fe3O4/ZIF-67. Environ Res. 2022;211:113020.

    Article  CAS  Google Scholar 

  37. Foroutan R, Mohammadi R, Peighambardoust SJ, Jalali S, Ramavandi B. Application of nano-silica particles generated from offshore white sandstone for cadmium ions elimination from aqueous media. Environ Technol Innov. 2020;19:101031.

    Article  Google Scholar 

  38. Foroutan R, Peighambardoust SJ, Mohammadi R, Peighambardoust SH, Ramavandi B. Application of walnut shell ash/ZnO/K2CO3 as a new composite catalyst for biodiesel generation from Moringa oleifera oil. Fuel. 2022;311:122624.

    Article  CAS  Google Scholar 

  39. Guo J, Yan C, Luo Z, Fang H, Hu S, Cao Y. Synthesis of a novel ternary HA/Fe-Mn oxides-loaded biochar composite and its application in cadmium (II) and arsenic (V) adsorption. J Environ Sci. 2019;85:168–76.

    Article  CAS  Google Scholar 

  40. Peighambardoust SJ, Boffito DC, Foroutan R, Ramavandi B. Sono-photocatalytic activity of sea sediment@ 400/ZnO catalyst to remove cationic dyes from wastewater. J Mol Liq. 2022;367:120478.

    Article  CAS  Google Scholar 

  41. Foroutan R, Peighambardoust SJ, Ghojavand S, Foroughi M, Ahmadi A, Bahador F, et al. Development of a magnetic orange seed/Fe3O4 composite for the removal of methylene blue and crystal violet from aqueous media. Biomass Conversion and Biorefinery. 2023:1–16.

  42. Kong L, Adidharma H. A new adsorption model based on generalized van der Waals partition function for the description of all types of adsorption isotherms. Chem Eng J. 2019;375:122112.

    Article  CAS  Google Scholar 

  43. Bharati DC, Rawat P, Saroj A. Structural, thermal, and ion dynamics studies of PVA-CS-NaI-based biopolymer electrolyte films. J Solid State Electrochem. 2021;25:1727–41.

    Article  CAS  Google Scholar 

  44. Katowah DF, Ismail SH, Sadek AH, Rahman MM. Ultrasensitive QCM sensor development for monitoring of methyl orange dye in aqueous phase based on novel cross-linked chitosan/PVA/GO/Ce-ZnO nanocomposite film. Mater Sci Eng, B. 2023;297:116804.

    Article  CAS  Google Scholar 

  45. Xu C, Wang H, Shang Y, Li B, Yu D, Wang Y. Highly efficient Cd (II) removal using 3D N-doped carbon derived from MOFs: Performance and mechanisms. J Hazard Mater. 2022;436:129149.

    Article  CAS  Google Scholar 

  46. Xue C, Yi X, Yang Y, Jiang F, Yin H, Dang Z. Chemical speciation and distribution of adsorbed Cd (ii) on goethite: influence of pH and sulfate. Environmental Science Environ Sci Nano. 2023;10:2500.

  47. Zhi M, Liu Q, Chen H, Chen X, Feng S, He Y. Thermal stability and flame retardancy properties of epoxy resin modified with functionalized graphene oxide containing phosphorus and silicon elements. ACS Omega. 2019;4(6):10975–84.

    Article  CAS  Google Scholar 

  48. Ain QU, Zhang H, Yaseen M, Rasheed U, Liu K, Subhan S, et al. Facile fabrication of hydroxyapatite-magnetite-bentonite composite for efficient adsorption of Pb (II), Cd (II), and crystal violet from aqueous solution. J Clean Prod. 2020;247:119088.

    Article  Google Scholar 

  49. Bandara T, Xu J, Potter ID, Franks A, Chathurika J, Tang C. Mechanisms for the removal of Cd (II) and Cu (II) from aqueous solution and mine water by biochars derived from agricultural wastes. Chemosphere. 2020;254:126745.

    Article  CAS  Google Scholar 

  50. Zhang M, Yin Q, Ji X, Wang F, Gao X, Zhao M. High and fast adsorption of Cd (II) and Pb (II) ions from aqueous solutions by a waste biomass based hydrogel. Sci Rep. 2020;10(1):3285.

    Article  CAS  Google Scholar 

  51. Khan ZH, Gao M, Qiu W, Islam MS, Song Z. Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. Chemosphere. 2020;246:125701.

    Article  CAS  Google Scholar 

  52. Wu J, Wang T, Wang J, Zhang Y, Pan W-P. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Sci Total Environ. 2021;754:142150.

    Article  CAS  Google Scholar 

  53. Pal DB, Selvasembian R, Singh P. Cadmium removal by composite copper oxide/ceria adsorbent from synthetic wastewater. Biomass Conv Bioref. 2023;13(9):7633–42.

    Article  CAS  Google Scholar 

  54. Das J, Saha R, Nath H, Mondal A, Nag S. An eco-friendly removal of Cd (II) utilizing banana pseudo-fibre and Moringa bark as indigenous green adsorbent and modelling of adsorption by artificial neural network. Environ Sci Pollut Res. 2022;29(57):86528–49.

    Article  CAS  Google Scholar 

  55. Elghamry I, Gouda M, Al-Fayiz YS. Synthesis of Chemically Modified Acid-Functionalized Multiwall Carbon Nanotubes with Benzimidazole for Removal of Lead and Cadmium Ions from Wastewater. Polymers. 2023;15(6):1421.

    Article  CAS  Google Scholar 

  56. Ahamad T, Naushad M, Al-Shahrani T, Al-Hokbany N, Alshehri SM. Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption: Kinetic and thermodynamic studies. Int J Biol Macromol. 2020;147:258–67.

    Article  CAS  Google Scholar 

  57. Hussain S, Kamran M, Khan SA, Shaheen K, Shah Z, Suo H, et al. Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. Int J Biol Macromol. 2021;168:383–94.

    Article  CAS  Google Scholar 

  58. Esvandi Z, Foroutan R, Mirjalili M, Sorial GA, Ramavandi B. Physicochemical behavior of Penaeuse semisulcatuse chitin for Pb and Cd removal from aqueous environment. J Polym Environ. 2019;27:263–74.

    Article  CAS  Google Scholar 

  59. Safarzadeh H, Peighambardoust SJ, Mousavi SH, Foroutan R, Mohammadi R, Peighambardoust SH. Adsorption ability evaluation of the poly (methacrylic acid-co-acrylamide)/cloisite 30B nanocomposite hydrogel as a new adsorbent for cationic dye removal. Environ Res. 2022;212:113349.

    Article  CAS  Google Scholar 

  60. Alizadeh M, Peighambardoust SJ, Foroutan R, Azimi H, Ramavandi B. Surface magnetization of hydrolyzed Luffa Cylindrica biowaste with cobalt ferrite nanoparticles for facile Ni2+ removal from wastewater. Environ Res. 2022;212:113242.

    Article  CAS  Google Scholar 

  61. Nurfatimah R. Preparation of polyethylene glycol diglycidyl ether (PEDGE) crosslinked chitosan/activated carbon composite film for Cd2+ removal. Carbohyd Polym. 2018;199:499–505.

    Article  Google Scholar 

  62. Mallakpour S, Madani M. Effects of glucose‐functionalized multiwalled carbon nanotubes on the structural, mechanical, and thermal properties of chitosan nanocomposite films. J Appl Polym Sci 2015;132:42022.

  63. Yin G, Tao L, Chen X, Bolan NS, Sarkar B, Lin Q, et al. Quantitative analysis on the mechanism of Cd2+ removal by MgCl2-modified biochar in aqueous solutions. J Hazard Mater. 2021;420:126487.

    Article  CAS  Google Scholar 

  64. Javaheri F, Kheshti Z, Ghasemi S, Altaee A. Enhancement of Cd2+ removal from aqueous solution by multifunctional mesoporous silica: Equilibrium isotherms and kinetics study. Sep Purif Technol. 2019;224:199–208.

    Article  CAS  Google Scholar 

  65. Jawad AH, Mubarak NSA, Abdulhameed AS. Hybrid crosslinked chitosan-epichlorohydrin/TiO 2 nanocomposite for reactive red 120 dye adsorption: kinetic, isotherm, thermodynamic, and mechanism study. J Polym Environ. 2020;28:624–37.

    Article  CAS  Google Scholar 

  66. Balarak D, Zafariyan M, Igwegbe CA, Onyechi KK, Ighalo JO. Adsorption of acid blue 92 dye from aqueous solutions by single-walled carbon nanotubes: isothermal, kinetic, and thermodynamic studies. Environ Process. 2021;8:869–88.

    Article  CAS  Google Scholar 

  67. De Benedetto C, Macario A, Siciliano C, Nagy BJ, De Luca P. Adsorption of reactive blue 116 dye and reactive yellow 81 dye from aqueous solutions by multi-walled carbon nanotubes. Materials. 2020;13(12):2757.

    Article  Google Scholar 

  68. He Y, Wu P, Xiao W, Li G, Yi J, He Y, et al. Efficient removal of Pb (II) from aqueous solution by a novel ion imprinted magnetic biosorbent: Adsorption kinetics and mechanisms. PLoS ONE. 2019;14(3):e0213377.

    Article  CAS  Google Scholar 

  69. Song H, Wang C, Kumar A, Ding Y, Li S, Bai X, et al. Removal of Pb2+ and Cd2+ from contaminated water using novel microbial material (Scoria@ UF1). J Environ Chem Eng. 2021;9(6):106495.

    Article  CAS  Google Scholar 

  70. Ayuba S, Mohammadib AA, Yousefic M, Changanic F. Performance evaluation of agro-based adsorbents for the removal of cadmium from wastewater. Desalin Water Treat. 2019;142:293–9.

    Article  Google Scholar 

  71. Wang G, Wang J, Chen Z, Hu J. Metal-organic framework grown in situ on chitosan microspheres as robust host of palladium for heterogeneous catalysis: Suzuki reaction and the p-nitrophenol reduction. Int J Biol Macromol. 2022;206:232–41.

    Article  CAS  Google Scholar 

  72. Mallakpour S, Amini Z. Green synthesis of Ag ultra-fine nano-catalyst supported on layered double oxide and chitosan: Accelerated reduction of 4-nitrophenol to 4-aminophenol. J Clean Prod. 2022;381:135154.

    Article  CAS  Google Scholar 

  73. Ali H, Ismail A. Recyclable and biodegradable Ag@ chitosan nanocomposite beads synthesized in one-step for catalytic hydrogenation of 4-Nitrophenol. J Polym Environ. 2022;30(8):3379–90.

    Article  CAS  Google Scholar 

  74. Abdelhameed RM, El-Shahat M, Abdel-Gawad H, Hegazi B. Efficient phenolic compounds adsorption by immobilization of copper-based metal-organic framework anchored polyacrylonitrile/chitosan beads. Int J Biol Macromol. 2023;240:124498.

    Article  CAS  Google Scholar 

  75. Zhu K, Xu H, Wakeel M, Haq TU, Ren X, Chen C. In-situ synthesis of ultrafine Co nanoparticles confined in interconnected nitrogen-doped carbon networks for enhanced reduction of 4-nitrophenol. Appl Surf Sci. 2021;563:150320.

    Article  CAS  Google Scholar 

  76. Tan X, Qin J, Li Y, Zeng Y, Zheng G, Feng F, et al. Self-supporting hierarchical PdCu aerogels for enhanced catalytic reduction of 4-nitrophenol. J Hazard Mater. 2020;397:122786.

    Article  CAS  Google Scholar 

  77. Yu Y, You S, Du J, Xing Z, Dai Y, Chen H, et al. ZIF-67-derived CoO (tetrahedral Co2+)@ nitrogen-doped porous carbon protected by oxygen vacancies-enriched SnO2 as highly active catalyst for oxygen reduction and Pt co-catalyst for methanol oxidation. Appl Catal B. 2019;259:118043.

    Article  CAS  Google Scholar 

  78. Mohamed MM, Khairy M, Ibrahem A. Pn junction based Ag2O@ Ag@ Coated functionalized carbon nanotubes and their efficient visible-light photocatalytic reduction performances. Microporous Mesoporous Mater. 2020;292:109734.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Razi University.

Funding

This declaration is "not applicable".

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Saeid Rostami: Methodology, Investigation, data analyses, Resources,

Writing & editing; Mohammad Mehdi Khodaei: Methodology, Project Supervision, Conceptualization, Reviewed and Finalized the Manuscript.

Corresponding author

Correspondence to Mohammad Mehdi Khodaei.

Ethics declarations

Ethical approval

This declaration is "not applicable".

Competing interests

The authors declare that they have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, M.S., Khodaei, M.M. Preparation and characterization of CS/PAT/ MWCNT@MgAl-LDHs nanocomposite for Cd2+ removal and 4-nitrophenol reduction. J Environ Health Sci Engineer (2024). https://doi.org/10.1007/s40201-023-00885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40201-023-00885-8

Keywords

Navigation