Skip to main content

Advertisement

Log in

Biomimetic oxidation of catechol employing complexes formed in situ with heterocyclic ligands and different copper(II) salts

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the present work, catecholase activity is presented. The complexes were prepared by condensation of the organic ligand pyrazolyl L 1 L 4 and copper(II) ion in situ. The pyrazolyl compounds L 1 L 4 used in this study are: L 1 is (3,5-dimethyl-pyrazol-1-ylmethyl)-(4-methyl-pyridin-2-yl)-pyrazol-1-ylmethyl-amine; L 2 is 1-{4-[(3,5-dimethyl-pyrazol-1-ylmethyl)-pyrazol-1-ylmethyl-amino]-phenyl}-ethanone; L 3 is 1-{4-[(3,5-dimethyl-pyrazol-1-ylmethyl)-[1,2,4]triazol-1-ylmethyl-amino]-phenyl}-ethanone, and L 4 is 2-[(3,5-dimethyl-pyrazol-1-ylmethyl)-[1,2,4]triazol-1-ylmethyl-amino]-6-methyl-pyrimidin-4-ol, and copper ions salts Cu(II) are (Cu(CH3COO)2, CuCl2, Cu(NO3)2 and CuSO4). In order to determine factors influencing the catecholase activity of these complexes, the effect of ligand nature, ligand concentration, nature of solvent and nature of counter anion has been studied. The best activity of catechol oxidation is given by the combination formed by one equivalent of ligand L 2 and one equivalent of Cu(CH3COO)2 in methanol solvent which is equal to 9.09 µmol L−1 min−1. The Michaelis–Menten model is applied for the best combination, to obtain the kinetic parameters, and we proposed the mechanism for oxidation reaction of catecholase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.D. Karlin, Science 261, 701–708 (1993)

    Article  CAS  Google Scholar 

  2. E.I. Solomon, U.M. Sundaram, T.E. Machonkin, Chem. Rev. 96, 2563–2605 (1996)

    Article  CAS  Google Scholar 

  3. B.B. Mishra, S. Gautam, A. Sharma, Food Chem. 134, 1855–1861 (2012)

    Article  CAS  Google Scholar 

  4. C. Eicken, B. Krebs, J.C. Sacchettini, Curr. Opin. Struct. Biol. 9, 677–683 (1999)

    Article  CAS  Google Scholar 

  5. I.A. Koval, K. Selmeczi, C. Belle, C. Philouze, E.S. Aman, I.G. Luneau, A.M. Schuitema, M.V. Vliet, P. Gamez, O. Roubeau, M. Lüken, B. Krebs, M. Lutz, A.L. Spek, J.L. Pierre, J. Reedijk Chem. Eur. J. 12, 6138–6150 (2006)

    Article  CAS  Google Scholar 

  6. L. Gasque, V.M.U. Saldívar, I. Membrillo, J. Olguín, E. Mijangos, S. Bernès, I. González, J. Inorg. Biochem. 102, 1227–1235 (2008)

    Article  CAS  Google Scholar 

  7. S.J. Smith, C.J. Noble, R.C. Palmer, G.R. Hanson, G. Schenk, L.R. Gahan, M.J. Riley, J. Biol. Inorg. Chem. 13, 499–510 (2008)

    Article  CAS  Google Scholar 

  8. T. Csay, B. Kripli, M. Giorgi, J. Kaizer, G. Speier, Inorg. Chem. Commun. 13, 227–230 (2010)

    Article  CAS  Google Scholar 

  9. S. Sarkar, S. Majumder, S. Sasmal, L. Carrella, E. Rentschler, S. Mohanta, Polyhedron 50, 270–282 (2013)

    Article  CAS  Google Scholar 

  10. L.G. Sebastián, V.M.U. Saldívar, E. Mijangos, M.R.M. Quijano, L.O. Frade, L. Gasque, J. Inorg. Biochem. 104, 1112–1118 (2010)

    Article  Google Scholar 

  11. Á. Kupán, J. Kaizer, G. Speier, M. Giorgi, M. Réglier, F. Pollreisz, J. Inorg. Biochem. 103, 389–395 (2009)

    Article  Google Scholar 

  12. S. Mandal, J. Mukherjee, F. Lloret, R. Mukherjee, Inorg. Chem. 51, 13148–13161 (2012)

    Article  CAS  Google Scholar 

  13. R. Bakshi, M. Rossi, F. Caruso, P. Mathur, Inorg. Chim. Acta 376, 175–188 (2011)

    Article  CAS  Google Scholar 

  14. M.K. Panda, M.M. Shaikh, R.J. Butcher, P. Ghosh, Inorg. Chim. Acta 372, 145–151 (2011)

    Article  CAS  Google Scholar 

  15. M.R. Malachowski, M.G. Davidson, J.N. Hoffman, Inorg. Chim. Acta 157, 91 (1989)

    Article  CAS  Google Scholar 

  16. S. Calancea, S.G. Reis, G.P. Guedes, R.A. AllaoCassaro, F. Semaan, F. Lopez-Ortiz, M.G.F. Var, Inorg. Chim. Acta 453, 104–114 (2016)

    Article  CAS  Google Scholar 

  17. F. Khaleghi, M.A. Khalilzadeh, J.B. Raoof, M. Tajbakhsh, H. Karimi-Maleh, J. Appl. Electrochem. 39, 1651–1654 (2009)

    Article  CAS  Google Scholar 

  18. D.D. Daugherty, S.F. Karel, Degradation of 2,4-dichlorophenoxyacetic acid by pseudomonas cepacia DBOl(pRO101) in a dual-substrate chemostat. Appl. Environ. Microbiol. 60, 3261–3267 (1994)

    CAS  Google Scholar 

  19. D.L. Daubaras, K. Saido, A.M. Chakrabarty, Purification of hydroxyquinol 1,2-dioxygenase and maleylacetate reductase: the lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100. Appl. Environ. Microbiol. 62, 4276–4279 (1996)

    CAS  Google Scholar 

  20. A. Kahru, L. Pollumaa, R. Reiman, A. Ratsep, M. Liiders, A. Haloveryan, The toxicity and biodegradability of eight main phenolic compounds characteristic to the oil-shale industry wastewaters: a test battery approach, Inc. Environ. Toxicol. 15, 431–442 (2000)

    Article  CAS  Google Scholar 

  21. F. Hamaguchi, T. Tsutsui, Assessment of genotoxicity of dental antiseptics: ability of phenol guaiacol, p-phenolsulfonic acid, sodium hypochlorite, p- chlorophenol, m-cresol or formaldehyde to induce unscheduled dna synthesis in cultured syrian hamster embryo cells. Jpn. J. Pharmacol. 83, 273–276 (2000)

    Article  CAS  Google Scholar 

  22. N. Okada, K. Satoh, T. Atsumi, M. Tajima, M. Ishihara, Y. Sugita, I. Yokoe, H. Sakagami, S. Fujisawa, Anticancer Res. 20, 2955–2960 (2000)

    CAS  Google Scholar 

  23. Y.J. Wang, Y.S. Ho, J.H. Jeng, H.J. Su, C.C. Lee, Different cell death mechanisms and gene expression in human cells induced by pentachlorophenol and its major metabolite, tetrachlorohydroquinone. Chem. Biol. Interact. 128, 173–188 (2000)

    Article  CAS  Google Scholar 

  24. N. Schweigert, R.W. Hunziker, B.I. Escher, R.I.L. Eggen, Environ. Toxicol. Chem. 20(2), 239–247 (2001)

    Google Scholar 

  25. A. Zerrouki, R. Touzani, S. El Kadiri, Arab. J. Chem. 4, 459–464 (2011)

    Article  CAS  Google Scholar 

  26. M. El Kodadi, F. Malek, R. Touzani, A. Ramdani, Catal. Commun. 9, 966–969 (2008)

    Article  Google Scholar 

  27. I. Bouabdallah, R. Touzani, I. Zidane, A. Ramdani, Catal. Commun. 8, 707–712 (2007)

    Article  CAS  Google Scholar 

  28. A. Mouadili, A. Zerrouki, L. Herrag, B. Hammouti, S. El Kadiri, R. Touzani, Res. Chem. Intermed. 38, 2427–2433 (2012)

    Article  CAS  Google Scholar 

  29. R. Saddik, M. Khoutoul, N. Benchat, B. Hammouti, S. El Kadiri, R. Touzani, Res. Chem. Intermed. 38, 2457–2470 (2012)

    Article  CAS  Google Scholar 

  30. R. Saddik, F. Abrigach, N. Benchat, S. El Kadiri, B. Hammouti, R. Touzani, Res. Chem. Intermed. 38, 1987–1998 (2012)

    Article  CAS  Google Scholar 

  31. A. Mouadili, S. Attayibat, S. El Kadiri, S. Radi, R. Touzani, Appl. Catal. A Gen. 454, 93–99 (2013)

    Article  CAS  Google Scholar 

  32. M. Khoutoul, Extraction liquide-liquide des métaux par des nouveaux absorbants à base du pyrazole, pyrane et triazole avec des calculs théoriques DFT et TD-DFT, Ph.D. Thesis, Oujda, Morocco, 2017

  33. K.S. Banu, M. Mukherjee, A. Guha, S. Bhattacharya, E. Zangrando, D. Das, Polyhedron 45, 245–254 (2012)

    Article  CAS  Google Scholar 

  34. T. Klabunde, C. Eicken, J.C. Saccettini, B. Krebs, Nat. Struct. Biol. 5, 1084–1090 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Kodadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyaala, R., El Ati, R., Khoutoul, M. et al. Biomimetic oxidation of catechol employing complexes formed in situ with heterocyclic ligands and different copper(II) salts. J IRAN CHEM SOC 15, 85–92 (2018). https://doi.org/10.1007/s13738-017-1211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1211-0

Keywords

Navigation