Skip to main content
Log in

Imidazo[1,2-a]Pyridine Derivatives–Copper(II) Salts: Highly Effective In Situ Combination for Catecholase

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In this work, we were interested in the search for new catalysts for catecholase, whose principle is based on the oxidation reaction of catechol to o-quinone. In this context, a series of ligands derived from 2-phenylimidazo[1,2-a]pyridine-3-carbaldehy were synthesized; then, the complexes formed in situ between these ligands and copper(II) salts, namely Cu(CH3COO)2, CuSO4, Cu(NO3)2 and CuCl2 were examined for their catecholase activity. The kinetics of the reaction was followed by measuring the absorbance versus time with a UV-Vis spectrophotometer for one hour. Compared with other work done in the same framework, the results obtained in this study show that the copper(II)-ligand complexes studied possess excellent catalytic activities for the oxidation of catechol to o-quinone. In particular, the complexes formed between the ligands and the salts Cu(CH3COO)2 and CuSO4 show oxidation rates much higher than those found in the literature. On the other hand, the complexes formed between the ligands and Cu(NO3)2 and CuCl2 also catalyze the reaction, but with much lower oxidation rates than the former. The complex formed between Cu(CH3COO)2 and L1 (2-phenylimidazo[1,2-a]pyridine-3-carbaldehyde) shows the highest catalytic activity with an oxidation rate of 260.41 µmol L−1 s−1, and the complex formed between L6 (6-chloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridine-3-carbaldehyde) and CuCl2 shows the lowest catalytic activity (43.4 µmol L−1 s−1). This study’s results also show that these complexes’ oxidation efficiency depends on several factors, namely the nature of the substituents on the ligands and the anions of the copper salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used for analysis during these studies were included in this published study.

References

  1. Sharma G, Sharma S, Kumar A et al (2022) Activated carbon as superadsorbent and sustainable material for diverse applications. Adsorpt Sci Technol 2022:1–21. https://doi.org/10.1155/2022/4184809

    Article  CAS  Google Scholar 

  2. Ettadili FE, Aghris S, Laghrib F et al (2022) Recent advances in the nanoparticles synthesis using plant extract: applications and future recommendations. J Mol Struct 1248:131538. https://doi.org/10.1016/j.molstruc.2021.131538

    Article  CAS  Google Scholar 

  3. Kampatsikas I, Rompel A (2021) Similar but still different: which amino acid residues are responsible for varying activities in Type-III copper enzymes? ChemBioChem 22:1161–1175. https://doi.org/10.1002/cbic.202000647

    Article  CAS  PubMed  Google Scholar 

  4. Min K, Park GW, Yoo YJ, Lee J-S (2019) A perspective on the biotechnological applications of the versatile tyrosinase. Bioresour Technol 289:121730. https://doi.org/10.1016/j.biortech.2019.121730

    Article  CAS  PubMed  Google Scholar 

  5. Horn N, Wittung-Stafshede P (2021) ATP7A-Regulated enzyme metalation and trafficking in the Menkes disease puzzle. Biomedicines 9:391. https://doi.org/10.3390/biomedicines9040391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Serra-Bardenys G, Peiró S (2021) Enzymatic lysine oxidation as a posttranslational modification. FEBS J Febs. https://doi.org/10.1111/febs.16205

    Article  Google Scholar 

  7. Nunes CS, Vogel K (2018) Tyrosinases—physiology, pathophysiology, and applications. Enzymes in Human and Animal Nutrition. Elsevier, Amsterdam, pp 403–412

    Google Scholar 

  8. Kishida R, Ito S, Sugumaran M et al (2021) Density functional theory-based calculation shed new light on the bizarre addition of cysteine thiol to dopaquinone. IJMS 22:1373. https://doi.org/10.3390/ijms22031373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Z, Xia X, You Y et al (2021) Fast-response fluorescent probe with favorable water solubility for highly sensitive imaging of endogenous tyrosinase in living cells and zebrafish model. Chin Chem Lett 32:1785–1789. https://doi.org/10.1016/j.cclet.2020.12.053

    Article  CAS  Google Scholar 

  10. Tighadouini S, Roby O, Mortada S et al (2022) Crystal structure, physicochemical, DFT, optical, keto-enol tautomerization, docking, and anti-diabetic studies of (Z)-pyrazol β-keto-enol derivative. J Mol Struct 1247:131308. https://doi.org/10.1016/j.molstruc.2021.131308

    Article  CAS  Google Scholar 

  11. Mahato S, Meheta N, Kotakonda M et al (2021) Synthesis, structure, polyphenol oxidase mimicking and bactericidal activity of a zinc-schiff base complex. Polyhedron 194:114933. https://doi.org/10.1016/j.poly.2020.114933

    Article  CAS  Google Scholar 

  12. Abdou A, Elmakssoudi A, El Amrani A et al (2021) Recent advances in chemical reactivity and biological activities of eugenol derivatives. Med Chem Res 30:1011–1030. https://doi.org/10.1007/s00044-021-02712-x

    Article  CAS  Google Scholar 

  13. Freitas DF, da Rocha IM, Vieira-da-Motta O, de Paula Santos C (2021) The role of melanin in the biology and ecology of nematophagous fungi. J Chem Ecol 47:597–613. https://doi.org/10.1007/s10886-021-01282-x

    Article  CAS  PubMed  Google Scholar 

  14. Saldarriaga-Hernández S, Velasco-Ayala C, Leal-Isla Flores P et al (2020) Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. Int J Biol Macromol 161:1099–1116. https://doi.org/10.1016/j.ijbiomac.2020.06.047

    Article  CAS  PubMed  Google Scholar 

  15. Kumar A, Chandra R (2020) Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 6:e03170. https://doi.org/10.1016/j.heliyon.2020.e03170

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang Y, Zhu S, Zou L-H (2019) Recent advances in direct functionalization of Quinones: recent advances in direct functionalization of Quinones. Eur J Org Chem 2019:2179–2201. https://doi.org/10.1002/ejoc.201900028

    Article  CAS  Google Scholar 

  17. da Silva Júnior EN, Jardim GAM, Jacob C et al (2019) Synthesis of quinones with highlighted biological applications: a critical update on the strategies towards bioactive compounds with emphasis on lapachones. Eur J Med Chem 179:863–915. https://doi.org/10.1016/j.ejmech.2019.06.056

    Article  CAS  PubMed  Google Scholar 

  18. Elmehriki AAH, Gleason JL (2019) A spiroalkylation method for the stereoselective construction of α-quaternary carbons and its application to the total synthesis of (R)-puraquinonic acid. Org Lett 21:9729–9733. https://doi.org/10.1021/acs.orglett.9b03887

    Article  CAS  PubMed  Google Scholar 

  19. Moutaouakil M, Tighadouini S, Saddik R (2022) New methods for the synthesis of 3-Aroylimidazo[1,2-a]pyridines: a review. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2022.2138925

    Article  Google Scholar 

  20. Bazin M-A, Cojean S, Pagniez F et al (2021) In vitro identification of imidazo[1,2-a]pyrazine-based antileishmanial agents and evaluation of L. major casein kinase 1 inhibition. Eur J Med Chem 210:112956. https://doi.org/10.1016/j.ejmech.2020.112956

    Article  CAS  PubMed  Google Scholar 

  21. Sanapalli BKR, Ashames A, Sigalapalli DK et al (2022) Synthetic imidazopyridine-based derivatives as potential inhibitors against multi-drug resistant bacterial infections: a review. Antibiotics 11:1680. https://doi.org/10.3390/antibiotics11121680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wei S, Li L, Shu Y et al (2017) Synthesis, antifungal and antitumor activity of two new types of imidazolin-2-ones. Bioorg Med Chem 25:6501–6510. https://doi.org/10.1016/j.bmc.2017.10.033

    Article  CAS  PubMed  Google Scholar 

  23. Saddik R, Hammoudan I, Tighadouini S et al (2022) Mesoporous silica modified with 2-phenylimidazo[1,2-a] pyridine-3-carbaldehyde as an effective adsorbent for Cu(II) from aqueous solutions: a combined experimental and theoretical study. Molecules 27:5168. https://doi.org/10.3390/molecules27165168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mokhtari TS, Seifi M, Saheb V, Sheibani H (2019) Polar [3 + 2] cycloaddition of isatin-3-imines with electrophilically activated heteroaromatic N-ylides: synthesis of spirocyclic imidazo[1,2-a]pyridine and isoquinoline derivatives. Arab J Chem 12:2937–2942. https://doi.org/10.1016/j.arabjc.2015.05.023

    Article  CAS  Google Scholar 

  25. Pelosi AG, Zucolotto Cocca LH, Abegão LMG et al (2022) Influence of electron-withdrawing groups in two-photon absorption of imidazopyridines derivatives. Dyes Pigm 198:109972. https://doi.org/10.1016/j.dyepig.2021.109972

    Article  CAS  Google Scholar 

  26. Acharya SS, Bhaumick P, Kumar R, Choudhury LH (2022) Iodine-catalyzed multicomponent synthesis of highly fluorescent pyrimidine-linked imidazopyridines. ACS Omega 7:18660–18670. https://doi.org/10.1021/acsomega.2c01332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Althagafi I, Abdel-Latif E (2022) Synthesis and antibacterial activity of New Imidazo[1,2- a ]pyridines festooned with pyridine, thiazole or pyrazole moiety. Polycycl Aromat Compd 42:4487–4500. https://doi.org/10.1080/10406638.2021.1894185

    Article  CAS  Google Scholar 

  28. Tran C, Hamze A (2022) Recent developments in the photochemical synthesis of functionalized imidazopyridines. Molecules 27:3461. https://doi.org/10.3390/molecules27113461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elseginy SA, Oliveira ASF, Shoemark DK, Sessions RB (2022) Identification and validation of novel microtubule suppressors with an imidazopyridine scaffold through structure-based virtual screening and docking. RSC Med Chem 13:929–943. https://doi.org/10.1039/D1MD00392E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bereiter R, Oberlechner M, Micura R (2022) A new route for the synthesis of 1-deazaguanine and 1-deazahypoxanthine. Beilstein J Org Chem 18:1617–1624. https://doi.org/10.3762/bjoc.18.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Padmaja P, Reddy PN, Subba Reddy BV et al (2023) Design, synthesis, in vitro α-glucosidase inhibitory, antioxidant activity and molecular docking studies of novel pyridine linked imidazo[1,2-a]pyridine derivatives. J Mol Struct 1273:134238. https://doi.org/10.1016/j.molstruc.2022.134238

    Article  CAS  Google Scholar 

  32. Mishra NP, Mohapatra S, Sahoo CR et al (2021) Design, one-pot synthesis, molecular docking study, and antibacterial evaluation of novel 2H-chromene based imidazo[1,2-a]pyridine derivatives as potent peptide deformylase inhibitors. J Mol Struct 1246:131183. https://doi.org/10.1016/j.molstruc.2021.131183

    Article  CAS  Google Scholar 

  33. Wang W, Lu Y, Chen E et al (2021) Anti-tumor compounds identification from gossypol Groebke imidazopyridine product. Bioorg Chem 114:105146. https://doi.org/10.1016/j.bioorg.2021.105146

    Article  CAS  PubMed  Google Scholar 

  34. Kalari S, Balasubramanian S, Rode HB (2021) Difluorinative-hydroxylation and C-3 functionalization (halogenation/SCN/NO) of imidazopyridine using selectfluor as fluorine source or oxidant respectively. Tetrahedron Lett 71:153028. https://doi.org/10.1016/j.tetlet.2021.153028

    Article  CAS  Google Scholar 

  35. Zucolotto Cocca LH, Pelosi A, Sciuti LF et al (2022) Two-photon brightness of highly fluorescent imidazopyridine derivatives: two-photon and ultrafast transient absorption studies. J Mol Liq 348:118379. https://doi.org/10.1016/j.molliq.2021.118379

    Article  CAS  Google Scholar 

  36. Jadhav NH, Sakate SS, Shinde DR et al (2020) A transition metal-free cascade reaction using heterogeneous tin(IV)oxide catalyzed and iodine promoted synthesis of 3-aroylimidazo[1,2-a]pyridines. Tetrahedron Lett 61:152250. https://doi.org/10.1016/j.tetlet.2020.152250

    Article  CAS  Google Scholar 

  37. Zhang Y, Chen R, Wang Z et al (2021) I2-Catalyzed three-component consecutive reaction for the synthesis of 3-aroylimidazo[1,2-a]-N-heterocycles. J Org Chem 86:6239–6246. https://doi.org/10.1021/acs.joc.1c00023

    Article  CAS  PubMed  Google Scholar 

  38. Roy M, Chakravarthi BVSK, Jayabaskaran C et al (2011) Impact of metal binding on the antitumor activity and cellular imaging of a metal chelator cationic imidazopyridine derivative. Dalton Trans 40:4855–4864. https://doi.org/10.1039/C0DT01717E

    Article  CAS  PubMed  Google Scholar 

  39. Saddik R, Khoutoul M, Benchat N et al (2012) Evaluation of catalytic activity of imidazolo[1,2-a]pyridine derivatives: oxidation of catechol. Res Chem Intermed 38:2457–2470. https://doi.org/10.1007/s11164-012-0561-6

    Article  CAS  Google Scholar 

  40. Kusy D, Maniukiewicz W, Błażewska KM (2019) Microwave-assisted synthesis of 3-formyl substituted imidazo[1,2-a]pyridines. Tetrahedron Lett 60:151244. https://doi.org/10.1016/j.tetlet.2019.151244

    Article  CAS  Google Scholar 

  41. Jadhav SD, Sekar N (2017) Novel low-molecular weight styryl dyes based on 2-chloroimidazo[1,2-a]pyridine-3-carbaldehyde – synthesis and fluorescent molecular rotor studies. J Lumin 190:289–297. https://doi.org/10.1016/j.jlumin.2017.05.066

    Article  CAS  Google Scholar 

  42. Koubachi J, El Kazzouli S, Bousmina M, Guillaumet G (2014) Functionalization of Imidazo[1,2-a]pyridines by means of metal-catalyzed cross-coupling reactions. Eur J Org Chem 2014:5119–5138. https://doi.org/10.1002/ejoc.201400065

    Article  CAS  Google Scholar 

  43. Moutaouakil M, Tighadouini S, Almarhoon M Z, et al (2022) Quinoline derivatives with different functional groups: evaluation of their catecholase activity. Catalysts 12:1468. https://doi.org/10.3390/catal12111468

    Article  CAS  Google Scholar 

  44. Koudad M, Lamsayah M, Elaatiaoui A et al (2018) Synthesis, liquid liquid extraction of Cu(II) and Pb(II) With DFT calculation studies of new imidazo[1, 2-a]pyridine chalcones. J Mater Environ Sci 9(11):3019–3025

    CAS  Google Scholar 

  45. Zhang S, Yuan W, Qin Y et al (2018) Bidentate BODIPY-appended 2-pyridylimidazo[1,2-a]pyridine ligand and fabrication of luminescent transition metal complexes. Polyhedron 148:22–31. https://doi.org/10.1016/j.poly.2018.03.023

    Article  CAS  Google Scholar 

  46. Kodadi ME, Malek F, Touzani R, Ramdani A (2008) Synthesis of new tripodal ligand 5-(bis(3,5-dimethyl-1H-pyrazol-1-ylmethyl)amino)pentan-1-ol, catecholase activities studies of three functional tripodal pyrazolyl N-donor ligands, with different copper (II) salts. Catal Commun 9:966–969. https://doi.org/10.1016/j.catcom.2007.09.038

    Article  CAS  Google Scholar 

  47. Zerrouki A, Touzani R, El Kadiri S (2011) Synthesis of new derivatized pyrazole based ligands and their catecholase activity studies. Arab J Chem 4:459–464. https://doi.org/10.1016/j.arabjc.2010.07.013

    Article  CAS  Google Scholar 

  48. El Ati R, Takfaoui A, El Kodadi M et al (2019) Catechol oxidase and copper(I/II) complexes derived from bipyrazol ligand: synthesis, molecular structure investigation of new biomimetic functional model and mechanistic study. Mater Today 13:1229–1237. https://doi.org/10.1016/j.matpr.2019.04.092

    Article  CAS  Google Scholar 

  49. Hu C, Su T-R, Lin T-J et al (2018) Yellowish and blue luminescent graphene oxide quantum dots prepared via a microwave-assisted hydrothermal route using H 2 O 2 and KMnO 4 as oxidizing agents. New J Chem 42:3999–4007. https://doi.org/10.1039/C7NJ03337K

    Article  CAS  Google Scholar 

  50. Bouroumane N, El Kodadi M, Touzani R et al (2022) New pyrazole-based ligands: synthesis, characterization, and catalytic activity of their copper complexes. Arab J Sci Eng 47:269–279. https://doi.org/10.1007/s13369-021-05343-x

    Article  CAS  Google Scholar 

  51. Titi A, Zaidi K, Alzahrani AYA et al (2023) New in situ catalysts based on nitro functional pyrazole derivatives and copper (II) salts for promoting oxidation of catechol to o-quinone. Catalysts 13:162. https://doi.org/10.3390/catal13010162

    Article  CAS  Google Scholar 

  52. Petran A, Popa A, Hădade ND, Liebscher J (2020) New Insights into catechol oxidation – application of ammonium peroxydisulfate in the presence of arylhydrazines. ChemistrySelect 5:9523–9530. https://doi.org/10.1002/slct.202002370

    Article  CAS  Google Scholar 

  53. Gajewska MJ, Ching W-M, Wen Y-S, Hung C-H (2014) Synthesis, structure, and catecholase activity of bispyrazolylacetate copper(ii) complexes. Dalton Trans 43:14726–14736. https://doi.org/10.1039/C4DT01467G

    Article  CAS  PubMed  Google Scholar 

  54. Saddik R, Abrigach F, Benchat N et al (2012) Catecholase activity investigation for pyridazinone- and thiopyridazinone-based ligands. Res Chem Intermed 38:1987–1998. https://doi.org/10.1007/s11164-012-0520-2

    Article  CAS  Google Scholar 

Download references

Funding

The authors of this research did not receive any funding concerning this research.

Author information

Authors and Affiliations

Authors

Contributions

RS, CA and ST: conceptualization, supervision, project administration, methodology, resources, data curation, writing of the original draft, review, and editing; MM and OR: conduct of experiment; JJ: project administration. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Rafik Saddik.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Ethical Approval

This research does not require ethical approval.

Consent for Publication

On behalf of the authors, I hereby granted the right of this entire article content to this journal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moutaouakil, M., Abdelmjid, C., Roby, O. et al. Imidazo[1,2-a]Pyridine Derivatives–Copper(II) Salts: Highly Effective In Situ Combination for Catecholase. Chemistry Africa 6, 2621–2630 (2023). https://doi.org/10.1007/s42250-023-00650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00650-2

Keywords

Navigation