Skip to main content
Log in

Synthesis of new heterocyclic ligands and study of the catecholase activity of catalysts based on copper(II)

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Four tridentate ligands L1-L4, namely N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl) pyridin-2-amine: L1, 5-chloro-N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl) pyridin-2-amine:L2, N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)thiazol-2-amine:L3 and N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-6-methylpyridin-2-amine: L4 were synthesized, characterized (by13C NMR, 1H NMR and mass spectroscopy) and employed for the synthesis of copper(II) complexes in situ. These ligands contain three sp2 nitrogen atoms, two pyrazole nitrogen and one pyridine nitrogen, capable of coordinating with copper (II). Then the catalytic properties of certain complexes formed in situ were evaluated to catalyze the oxidation of catechol to o-quinone. Among these complexes, the L1/Cu(CH3COO)2 complex which showed good catalytic activity of the combination 1:1 ligand/metal in THF for this reaction, with a reaction rate of oxidation of catechol to o-quinone equal to 26.37 μmol L−1 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Morioka C, Tachi Y, Suzuki S, Itoh S (2006) Significant enhancement of monooxygenase activity of oxygen carrier protein hemocyanin by urea. J Am Chem Soc 128(21):6788–6789. https://doi.org/10.1021/ja061631h

    Article  CAS  PubMed  Google Scholar 

  2. Zal F, Chausson F, Leize E, van Dorsselaer A, Lallier FH, Green BN (2002) Quadrupole time-of-flight mass spectrometry of the native hemocyanin of the deep-sea crab Bythograea thermydron. Biomacromol 3(2):229–231. https://doi.org/10.1021/bm0101668

    Article  CAS  Google Scholar 

  3. Wilcox DE, Porras AG, Hwang YT, Lerch K, Winkler ME, Salomon EI (1985) Substrate analog binding to the coupled binuclear copper active site in tyrosinase. J Am Chem Soc 107(13):4015–4027. https://doi.org/10.1021/ja00299a043

    Article  CAS  Google Scholar 

  4. Yu L (2003) Inhibitory effects of (S)- and (R)-6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acids on tyrosinase activity. J Agric Food Chem 51(8):2344–2347. https://doi.org/10.1021/jf0208379

    Article  CAS  PubMed  Google Scholar 

  5. Itoh S, Kumei H, Taki M, Nagatomo S, Kitagawa T, Fukuzumi S (2001) Oxygenation of phenols to catechols by A (μ-η22-Peroxo)dicopper(II) complex: mechanistic insight into the phenolase activity of tyrosinase. J Am Chem Soc 123(27):6708–6709. https://doi.org/10.1021/ja015702i

    Article  CAS  PubMed  Google Scholar 

  6. Malachowski MR, Davidson MG, Hoffman JN (1989) Synthesis, characterization and catecholase activity of a series of novel mononuclear Cu(II) complexes derived from a tripodal ligand. Inorg Chim Acta 157:91–94. https://doi.org/10.1016/S0020-1693(00)83428-3

    Article  CAS  Google Scholar 

  7. Iryna AK, Mieke H, Arno FS, Partick G, Olivier R, Catherine B, Jean-Louis P, Eric SA, Matthias L, Bernt K, Martin L, Anthony LS, Reedijk J (2004) Dinuclear CuII complexes with a new phenol-based ligand bearing pyridine and thiophene substituents: synthesis, characterization and interaction with catechol substrates. Eur J Inorg Chem 20:4036–4045. https://doi.org/10.1002/ejic.200400092

    Article  CAS  Google Scholar 

  8. Tippu SS, Pamela C, Brian P (2002) Manganese catalysed reduction of dioxygen to hydrogen peroxide: structural studies on a manganese(III)–catecholate complex. Inorg Chim Acta 348:115–122. https://doi.org/10.1016/S0020-1693(02)01511-6

    Article  CAS  Google Scholar 

  9. Calancea S, Reis SG, Guedes GP, AllaoCassaro RA, Semaan F, Lopez-Ortiz F, Var MGF (2016) A new family of multinuclear mixed-ligand copper(II) clusters: crystal structures, magnetic properties and catecholase-like activity. Inorg Chim Acta 453:104–114. https://doi.org/10.1016/j.ica.2016.07.057

    Article  CAS  Google Scholar 

  10. Mitic N, Smith JS, Neves A, Guddat LW, Gahan LR, Schenk G (2006) The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 106(8):3338–3363. https://doi.org/10.1021/cr050318f

    Article  CAS  PubMed  Google Scholar 

  11. Gichinga MG, Striegler S (2008) Effect of water on the catalytic oxidation of catechols. J Am Chem Soc 130(15):5150–5156. https://doi.org/10.1021/ja078057+

    Article  CAS  PubMed  Google Scholar 

  12. Rey NA, Neves A, Bortoluzzi AJ, Pich CT, Terenzi H (2007) Catalytic promiscuity in biomimetic systems: catecholase-like activity, phosphatase-like activity, and hydrolytic DNA cleavage promoted by a new dicopper(II) hydroxo-bridged complex. Inorg Chem 46(2):348–350. https://doi.org/10.1021/ic0613107

    Article  CAS  PubMed  Google Scholar 

  13. Mondal M, Guha PM, Giri S, Ghosh A (2016) Deactivation of catecholase-like activity of a dinuclear Ni(II) complex by incorporation of an additional Ni(II). J Mol Catal A: Chem 424:54–64. https://doi.org/10.1016/j.molcata.2016.08.012

    Article  CAS  Google Scholar 

  14. Osorio REHMB, Peralta RA, Bortoluzzi AJ, de Almeida VR, Szpoganicz B, Fischer FL, Terenzi H, Mangrich AS, Mantovani KM, Ferreira DEC, Rocha WR, Haase W, Tomkowicz Z, Dos Anjos A, Neves A (2012) Synthesis, magnetostructural correlation, and catalytic promiscuity of unsymmetric dinuclear copper(II) complexes: models for catechol oxidases and hydrolases. Inorg Chem 51(3):1569–1589. https://doi.org/10.1021/ic201876k

    Article  CAS  PubMed  Google Scholar 

  15. Gahan LR, Smith S, Neves A, Schenk G (2009) Phosphate ester hydrolysis: metal complexes as purple acid phosphatase and hosphotriesterase analogues. Eur J Inorg Chem 19:2745–2758. https://doi.org/10.1002/ejic.200900231

    Article  CAS  Google Scholar 

  16. Neves A, Lanznaster M, Bortoluzzi A, Peralta RA, Casellato A, Castellano EE, Herrald P, Riley MJ, Schenk G (2007) An unprecedented FeIII(μ-OH)ZnII complex that mimics the structural and functional properties of purple acid phosphatases. J Am Chem Soc 129(4):7486–7487. https://doi.org/10.1021/ja071184l

    Article  CAS  PubMed  Google Scholar 

  17. Adhikary J, Chakraborty A, Dasgupta S, Chattopadhyay SK, Kruszynski R, Trzesowska-Kruszynska A, Stepanovic´ S, Gruden-Pavlovic´ M, Swart M, Das D (2016) Unique mononuclear MnII complexes of an end-off compartmental Schiff base ligand: experimental and theoretical studies on their bio-relevant catalytic promiscuity. Dalton Trans 45:12409–12422. https://doi.org/10.1039/C6DT00625F

    Article  CAS  PubMed  Google Scholar 

  18. Gajewska MJ, Ching W, Wen Y, Hung C (2014) Synthesis, structure, and catecholase activity of bispyrazolylacetate copper(ii) complexes. Dalton Trans 43:14726–14736. https://doi.org/10.1039/C4DT01467G

    Article  CAS  PubMed  Google Scholar 

  19. Shyamal M, Mandal TK, Panja A, Saha A (2014) Influence of anionic co-ligands on the structural diversity and catecholase activity of copper(ii) complexes with 2-methoxy-6-(8-iminoquinolinylmethyl)phenol. RSC Adv 4:53520–53530. https://doi.org/10.1039/C4RA08025D

    Article  CAS  Google Scholar 

  20. Adhikary J, Majumdar I, Kundu P, Kornweitz H, Kara H, Das D (2018) Role of electronegative atom present on ligand backbone and substrate binding mode on catecholase- and phosphatase-like activities of dinuclear niii complexes: a theoretical support. ChemistrySelect 3(5):1445–1454. https://doi.org/10.1002/slct.201702861

    Article  CAS  Google Scholar 

  21. El Kodadi M, Malek F, Touzani R, Ramdani A (2008) Synthesis of new tripodal ligand 5-(Bis(3,5-dimethyl-1H-pyrazol-1-ylmethyl)amino)pentan-1-ol, catecholase activities studies of three functional tripodal pyrazolyl N-donor ligands, with different copper(II) salts. Catal Commun 9(5):966–969. https://doi.org/10.1016/j.catcom.2007.09.038

    Article  CAS  Google Scholar 

  22. Titi A, Al-Noaimi M, Kaddouri Y, El Ati R, Yousfi EB, El Kodadi M, Touzani R (2019) Study of the catecholase catalytic properties of copper(II) complexes prepared in-situ with monodentate ligands. Mater Today: Proc 13:1134–1142. https://doi.org/10.1016/j.matpr.2019.04.081

    Article  CAS  Google Scholar 

  23. Boyaala R, El Ati R, Khoutoul M, El Kodadi M, Touzani R, Hammouti B (2018) Biomimetic oxidation of catechol employing complexes formed in situ with heterocyclic ligands and different copper(II) salts. J Iran Chem Soc 15(1):85–92. https://doi.org/10.1007/s13738-017-1211-0

    Article  CAS  Google Scholar 

  24. Ding HY, Cheng HJ, Wang F, Liu DX, Li HX, Fang YY, Zhao W, Lang JP (2013) [(bmppy)Cu(μ-I)]2 (bmppy = 2,6-Bis(1-methyl-1H-pyrazol-3-yl)pyridine): synthesis, crystal structure and its catalytic performance for MMA polymerization. J Org Chem 741–742:1–6. https://doi.org/10.1016/j.jorganchem.2013.05.012

    Article  CAS  Google Scholar 

  25. El Ati R, Takfaoui A, El Kodadi M, Touzani R, Yousfi EB, Almalki FA, Ben Hadda T (2019) Catechol oxidase and copper(I/II) complexes derived from bipyrazol ligand: synthesis, molecular structure investigation of new biomimetic functional model and mechanistic study. Mater Today 13:1229–1237. https://doi.org/10.1016/j.matpr.2019.04.092

    Article  CAS  Google Scholar 

  26. Malek F, Draoui N, Feron O, Radi S (2014) Tridentate bipyrazole compounds with a side-arm as a new class of antitumor agents. Res Chem Intermed 40:681–687. https://doi.org/10.1007/s11164-012-0993-z

    Article  CAS  Google Scholar 

  27. Harit T, Malek F, El Bali B, Khan A, Dalvandi K, Marasini BP, Noreen S, Malik R, Khan S, Choudhary MI (2012) Synthesis and enzyme inhibitory activities of some new pyrazole-based heterocyclic compounds. Chem Res 21(10):2772–2778. https://doi.org/10.1007/s00044-011-9804-0

    Article  CAS  Google Scholar 

  28. Lamsayah M, Khoutoul M, Takfaoui A, Abrigach F, Oussaid A, Touzani R (2015) Selective liquid-liquid extraction of Fe(II) and Cd(II) using N, N’-pyrazole bidentate ligands with theoretical study investigations. Sep Sci Technol 50(14):2170–2176. https://doi.org/10.1080/01496395.2015.1015685

    Article  CAS  Google Scholar 

  29. Gamez P, Steensma RH, Driessen WL, Reedijk J (2002) Copper(II) compounds of the planar-tridentate ligand 2,6-Bis(pyrazol-3-yl)pyridine. Inorg Chim Acta 333:51–56. https://doi.org/10.1016/S0020-1693(02)00754-5

    Article  CAS  Google Scholar 

  30. Mukherjee R (2000) Coordination chemistry with pyrazole-based chelating ligands: molecular structural aspects. Coord Chem Rev 203:151–218. https://doi.org/10.1016/S0010-8545(99)00144-7

    Article  CAS  Google Scholar 

  31. Zavozin AG, Ignat’ev NV, Schulte M, Zlotin SG (2015) Synthesis of novel tridentate pyrazole–bipyridine ligands for Co-complexes as redox-couples in dye-sensitized solar cells. Tetrahedron 71(45):8551–8556. https://doi.org/10.1016/j.tet.2015.09.032

    Article  CAS  Google Scholar 

  32. Elmsellem H, Harit T, Aouniti A, Malek F, Riahi A, Chetouani A, Hammouti B (2015) Adsorption properties and inhibition of mild steel corrosion in 1 M HCl solution by some bipyrazolic derivatives: Experimental and theoretical investigations. Metals Phys Chem Surfaces 51(5):873–884. https://doi.org/10.1134/S207020511505007X

    Article  CAS  Google Scholar 

  33. El Kodadi M, Benamar M, Bouabdallah I, Zyad A, Malek F, Touzani R, Ramdani A, Melhaoui A (2007) New synthesis of two tridentate bipyrazolic compounds and their cytotoxic activity tumor cell lines. Product Res 21(11):947–952. https://doi.org/10.1080/14786410701371314

    Article  CAS  Google Scholar 

  34. Harit T, Malek F (2017) Elaboration of new thin solid membrane bearing a tetrapyrazolic macrocycle for the selective transport of lithium cation. Sep Purif Technol 188:394–398. https://doi.org/10.1016/j.seppur.2017.07.060

    Article  CAS  Google Scholar 

  35. Harit T, Malek F, El Bali B, Dusek M, Kucerakova M (2016) Synthesis and characterization of two new tetrapyrazolic macrocycles for the selective extraction of cesium cation. Tetrahedron 72(27–28):3966–3973. https://doi.org/10.1016/j.tet.2016.05.026

    Article  CAS  Google Scholar 

  36. Harit T, Isaad J, Malek F (2016) Novel efficient functionalized tetrapyrazolic macrocycle for the selective extraction of lithium cations. Tetrahedron 72(18):2227–2232. https://doi.org/10.1016/j.tet.2016.03.006

    Article  CAS  Google Scholar 

  37. Harit T, Bellaouchi R, Mokhtari C, El Bali B, Asehraou A, Malek F (2017) New generation of tetrapyrazolic macrocycles: synthesis and examination of their complexation properties and antibacterial activity. Tetrahedron 73(34):5138–5143. https://doi.org/10.1016/j.tet.2017.07.006

    Article  CAS  Google Scholar 

  38. Abrigach F, Bouchal B, Riant O, Macé Y, Takfaoui A, Radi S, Oussaid A, Bellaoui M, Touzani R (2016) New N, N, N’, N’-tetradentate pyrazoly agents: synthesis and evaluation of their antifungal and antibacterial activities. Med Chem 12:83–89. https://doi.org/10.2174/1573406411666150519111800

    Article  CAS  PubMed  Google Scholar 

  39. Merkel M, Möller N, Piacenza M, Grimme S, Rompel A, Krebs B (2005) Less symmetrical dicopper(II) complexes as catechol oxidase models-an adjacent thioether group increases catecholase activity. Chem Eur J 11:1201–1209. https://doi.org/10.1002/chem.200400768

    Article  CAS  PubMed  Google Scholar 

  40. Koval IA, Gamez P, Belle C, Selmeczi K, Reedijk J (2006) Synthetic models of the active site of catechol oxidase: mechanistic studies. Chem Soc Rev 35:814–840. https://doi.org/10.1039/b516250p

    Article  CAS  PubMed  Google Scholar 

  41. Thio Y, Yang X, Vittal JJ (2014) Influence of inductive effects and steric encumbrance on the catecholase activities of copper(II) complexes of reduced Schiff base ligands. Dalton Trans 43:3545–3556. https://doi.org/10.1039/C3DT52829D

    Article  CAS  PubMed  Google Scholar 

  42. Biswas A, Das LK, Drew MGB, Diaz C, Ghosh A (2012) Insertion of a Hydroxido bridge into a diphenoxido dinuclear copper(II) complex: drastic change of the magnetic property from strong antiferromagnetic to ferromagnetic and enhancement in the catecholase activity. Inorg Chem 51:10111–10121. https://doi.org/10.1021/ic300319s

    Article  CAS  PubMed  Google Scholar 

  43. Banu KS, Chattopadhyay T, Banerjee A, Bhattacharya S, Zangrando E, Das D (2009) Catechol oxidase activity of dinuclear copper(II) complexes of robson type macrocyclic ligands: syntheses, X-ray crystal structure, spectroscopic characterization of the adducts and kinetic studies. J Mol Catal A: Chem 310:34–41. https://doi.org/10.1016/j.molcata.2009.05.016

    Article  CAS  Google Scholar 

  44. Maiti M, Sadhukhan S, Thakurta S, Zangrando E, Pilet G, Bauzá A, Frontera A, Dede B, Mitra S (2014) Synthesis, structural characterization, theoretical calculations and catecholase mimetic activity of manganese-Schiff base complexes. Polyhedron 75:40–49. https://doi.org/10.1016/j.poly.2014.03.005

    Article  CAS  Google Scholar 

  45. Malachowski MR, Davidson MG (1989) Novel mono- and binuclear Cu(II) complexes: synthesis, characterization and catecholase activity. Inorg Chim Acta 162:199–204. https://doi.org/10.1016/S0020-1693(00)83147-3

    Article  CAS  Google Scholar 

  46. Bhardwaj VK, Aliaga-Alcalde N, Corbella M, Hundal G (2010) Synthesis, crystal structure, spectral and magnetic studies and catecholase activity of copper(II) complexes with di-and tri-podal ligands. Chim Acta 363:97–106. https://doi.org/10.1016/j.ica.2009.09.041

    Article  CAS  Google Scholar 

  47. Boulemche H, Anak B, Djedouani A, Touzani R, François M, Fleutot S, Rabilloud F (2019) Synthesis. X-ray crystallography, computational studies and catecholase activity of new zwitterionic Schiff base derivatives. J Mol Struct 1178:606–616. https://doi.org/10.1016/j.molstruc.2018.10.078

    Article  CAS  Google Scholar 

  48. Mouadili A, Attayibat A, El Kadiri S, Radi S, Touzani R (2013) Catecholase activity investigations using in situ copper complexes with pyrazole and pyridine based ligands. Appl Catal A-Gen 454:93–99. https://doi.org/10.1016/j.apcata.2013.01.011

    Article  CAS  Google Scholar 

  49. Bouabdallah I, Touzani R, Zidane I, Ramdani A (2007) Synthesis of new tripodal ligand: N, N-Bis[(1,5-dimethylpyrazol-3-yl)methyl]benzylamine.: catecholase activity of two series of tripodal ligands with some copper(II) salts. Catal Commun 8:707–712. https://doi.org/10.1016/j.catcom.2006.08.034

    Article  CAS  Google Scholar 

  50. Marion R, Saleh NM, Le Poul N, Floner D, Lavastre O, Geneste F (2012) Rate enhancement of the catechol oxidase activity of a series of biomimetic monocopper(II) complexes by introduction of non-coordinating groups in N-tripodal ligands. New J Chem 36:1828–1835. https://doi.org/10.1039/C2NJ40265C

    Article  CAS  Google Scholar 

  51. Mendoza-Quijano MR, Ferrer-Sueta G, Flores-A´lamo M, Aliaga-Alcalde N, Gomez-Vidales V, Ugalde-Saldivara VM, Gasque L (2012) Mechanistic insight on the catecholase activity of dinuclear copper complexes with distant metal centers. Dalton Trans 41:4985–4997. https://doi.org/10.1039/c2dt12155g

    Article  CAS  PubMed  Google Scholar 

  52. Zerrouki A, Touzani R, El Kadiri S (2011) Synthesis of new derivatized pyrazole based ligands and their catecholase activity studies. Arab J Chem 4:459–464. https://doi.org/10.1016/j.arabjc.2010.07.013

    Article  CAS  Google Scholar 

  53. Mouadili A, Zerrouki A, Herrag L, Hammouti B, El Kadiri S, Touzani R (2012) Catechol oxidation: activity studies using electron-rich nitrogen-based ligands. Res Chem Intermed 38:2427–2433. https://doi.org/10.1007/s11164-012-0558-1

    Article  CAS  Google Scholar 

  54. Saddik R, Khoutoul M, Benchat N, Hammouti B, El Kadiri S, Touzani R (2012) Evaluation of catalytic activity of imidazolo[1,2-a]pyridine derivatives: oxidation of catechol. Res Chem Intermed 38:2457–2470. https://doi.org/10.1007/s11164-012-0561-6

    Article  CAS  Google Scholar 

  55. Saddik R, Abrigach F, Benchat N, El Kadiri S, Hammouti B, Touzani R (2012) Catecholase activity investigation for pyridazinone- and thiopyridazinone-based ligands. Res Chem Intermed 38:1987–1998. https://doi.org/10.1007/s11164-012-0520-2

    Article  CAS  Google Scholar 

  56. Dvoretzky I, Richter GH (1950) Formaldehyde condensation in the pyrazole series. J Org Chem 15:1285–1288. https://doi.org/10.1021/jo01152a026

    Article  CAS  Google Scholar 

  57. Touzani R, Ramdani A, Ben Hadda T, El Kadiri S, Maury O, Le Bozec H, Dixneuf PH (2001) Efficient synthesis of new nitrogen donor containing tripods under microwave irradiation and without solvants. Synth Commun 31:1315–1321. https://doi.org/10.1081/SCC-100104040

    Article  CAS  Google Scholar 

  58. Kalanithi M, Rajarajan M, Tharmaraj P, Johnson Raja S (2015) Synthesis, spectroscopic characterization, analgesic, and antimicrobial activities of Co(II), Ni(II), and Cu(II) complexes of 2-[N, N-Bis-(3,5-dimethyl-pyrazolyl-1- methyl)] aminothiazole. Med Chem Res 24:1578–1585. https://doi.org/10.1007/s00044-014-1224-5

    Article  CAS  Google Scholar 

  59. Kaddouri Y, Abrigach F, Ouahhoud S, Benabbes R, El Kodadi M, Alsalme A, Al-Zaqri N, Touzani R (2021) Synthesis, characterization, reaction mechanism prediction and biological study of mono, bis and tetrakis pyrazole derivatives against Fusarium oxysporum f. sp. Albedinis with conceptual DFT and ligand-protein docking studies. Bioorganic Chem 110:104696. https://doi.org/10.1016/j.bioorg.2021.104696

    Article  CAS  Google Scholar 

  60. Gábor Lente: Deterministic Kinetics in Chemistry and Systems Biology. Springer, 2015, ISBN 978–3–319–15481–7, pp. 52–58. DOI https://doi.org/10.1007/978-3-319-15482-4.

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number RGP.2/226/43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Kodadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouroumane, N., El Boutaybi, M., El Kodadi, M. et al. Synthesis of new heterocyclic ligands and study of the catecholase activity of catalysts based on copper(II). Reac Kinet Mech Cat 136, 1545–1562 (2023). https://doi.org/10.1007/s11144-023-02370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02370-7

Keywords

Navigation