Skip to main content
Log in

α-Fe2O3 nanoflowers: synthesis, characterization, electrochemical sensing and photocatalytic property

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Nanoflower structured α-Fe2O3 was synthesized by adding hexamine to an aqueous solution of ferrous sulphate followed by drying and annealing at 600 °C for 6 h. X-ray diffraction analysis, Fourier-transformed infrared spectroscopy, Raman and DRS UV–visible absorption spectroscopy showed the formation of α-Fe2O3 with good crystalline nature. Field emission-scanning electron microscopy investigation revealed that the α-Fe2O3 has flower-like morphology, which is composed of nanorods. Cyclic voltammetry and chronoamperometry were used to investigate their electrochemical sensing property towards uric acid (UA). α-Fe2O3 exhibited enhanced sensing behavior with respect to that of bare GCE. Additionally, the α-Fe2O3 nanoflowers exhibit better photocatalytic activity of up to 71.7 % against rhodamine B (RhB) in short time of 60 min under visible light irradiation. It is found that the smaller crystallite size and flower-like morphology play a vital role in allowing an interaction between α-Fe2O3 and UA or RhB dye which enhances both the electrochemical sensing and photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

References

  1. W. Beek, M. Wienk, R. Janssen, Adv. Mater. 16, 1009–1013 (2004)

    Article  CAS  Google Scholar 

  2. G. Oskam, J. Sol-Gel Sci. Technol. 37, 161–164 (2006)

    Article  CAS  Google Scholar 

  3. T. Hyeon, S.S. Lee, J. Park, J. Am. Chem. Soc. 123, 12798–12801 (2001)

    Article  CAS  Google Scholar 

  4. R. Ramesh, S. Sohila, C. Muthamizhchelvan, M. Rajalakshmi, S. Ramya, S. Ponnusamy, J. Mater. Sci. Mater. Electron. 22, 1357–1360 (2011)

    Article  CAS  Google Scholar 

  5. C. Balazsi, Sens. Lett. 8, 694–697 (2010)

    Article  CAS  Google Scholar 

  6. S.N. Frank, A.J. Bard, J. Phys. Chem. 81, 1484–1488 (1977)

    Article  CAS  Google Scholar 

  7. N. Beermann, L. Vayssieres, S.E. Lindquist, A. Hagfeldt, J. Electrochem. Soc. 147, 2456–2461 (2000)

    Article  CAS  Google Scholar 

  8. Z.Y. Sun, H.Q. Yuan, Z.M. Liu, B.X. Han, X.R. Zhang, Adv. Mater. 17, 2993–2997 (2005)

    Article  CAS  Google Scholar 

  9. J. Chen, L.N. Xu, W.Y. Li, X.L. Gou, Adv. Mater. 17, 582–586 (2005)

    Article  CAS  Google Scholar 

  10. P. Chauhan, S. Annapoorni, S.K. Trikha, Thin. Sol. Film. 346, 266–268 (1999)

    Article  CAS  Google Scholar 

  11. L.P. Zhu, N.C. Bing, D.D. Yang, Y. Yang, G.H. Liao, L.J. Wang, Crys. Eng. Comm. 13, 4486–4490 (2011)

    Article  CAS  Google Scholar 

  12. Z. Zhang, M.F. Hossain, T. Miyazaki, T. Takahashi, Environ. Sci. Technol. 44, 4741–4746 (2010)

    Article  CAS  Google Scholar 

  13. E.S. Mora, E.G. Barojas, E.R. Rojas, R.S. Gonzalez, Sol. Ener. Mater. Sol. Cells 91, 1412–1415 (2007)

    Article  CAS  Google Scholar 

  14. L. Zhang, Y. Ni, X. Wang, G. Zhao, Talanta 82, 196–201 (2010)

    Article  CAS  Google Scholar 

  15. R.N. Goyal, A.K. Pandey, D. Kaur, A. Kumar, J. Nanosci. Nanotechnol. 9, 4692–4699 (2009)

    Article  CAS  Google Scholar 

  16. X. Cao, N. Wang, Analyst 136, 4241–4246 (2011)

    Article  CAS  Google Scholar 

  17. R. Suresh, R. Prabu, A. Vijayaraj, K. Giribabu, A. Stephen, V. Narayanan, Synth. React. Inorg. Metal-Org nano-Met. Chem. 42, 303–307 (2012)

    Article  CAS  Google Scholar 

  18. T.K. Townsend, E.M. Sabio, N.D. Browning, F.E. Osterloh, Energ. Environ. Sci. 4, 4270–4275 (2011)

    Article  CAS  Google Scholar 

  19. S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang, Y. Qi, W. Zhou, J. Phys. Chem. C 112, 4836–4843 (2008)

    Article  CAS  Google Scholar 

  20. R. Sharma, S. Lamba, S. Anna Poorni, J. Phys. D Appl. Phys. 38, 3354–3359 (2005)

    Article  CAS  Google Scholar 

  21. S.K. Janardhanan, R. Indumathy, B.U. Nair, Trans. Met. Chem. 33, 127–131 (2008)

    Article  CAS  Google Scholar 

  22. A. Zoppi, C. Lofrumento, E.M. Castellucci, P. Sciau, J. Raman, Spectrosc. 39, 40–46 (2008)

    CAS  Google Scholar 

  23. I. Chourpa, L.D. Eyrolles, L.N. Okassa, J.F. Fouquenet, S.C. Jonathan, M. Souce, H. Marchais, P. Dubois, Analyst 130, 1395–1403 (2005)

    Article  CAS  Google Scholar 

  24. Y.P. He, Y.M. Miao, C.R. Li, S.Q. Wang, L. Cao, S.S. Xie, G.Z. Yang, B.S. Zou, C. Burda, Phys. Rev. B 71(9), 125411 (2005)

    Article  CAS  Google Scholar 

  25. T. Hashimoto, T. Yamada, T. Yoko, J. Appl. Phys. 80, 3184–3190 (1996)

    Article  CAS  Google Scholar 

  26. H.I. Hsiang, F.S. Yen, Ceram. Int. 29, 1–6 (2003)

    Article  CAS  Google Scholar 

  27. W.B.J. Ingler, S.U.M. Khan, Int. J. Hyd. Energ. 30, 821–827 (2005)

    Article  CAS  Google Scholar 

  28. H. Wang, J. Xie, K. Yan, M. Duan, J. Mater. Sci. Technol. 27, 153–158 (2011)

    Article  Google Scholar 

  29. W. Yan, H. Fan, Y. Zhai, C. Yang, P. Ren, L. Huang, Sens. Actuators, B 160, 1372–1379 (2011)

    Article  CAS  Google Scholar 

  30. G. Yang, L. Tan, Y. Shi, S. Wang, X. Lu, H. Bai, Y. Yang, Bull. Kor. Chem. Soc. 30, 454–458 (2009)

    Article  CAS  Google Scholar 

  31. R. Suresh, R. Prabu, A. Vijayaraj, K. Giribabu, A. Stephen, V. Narayanan, Mater. Chem. Phys. 134, 590–596 (2012)

    Article  CAS  Google Scholar 

  32. L. Wang, P. Huang, J. Bai, H. Wang, X. Wu, Y. Zhao, Int. J. Electrochem. Sci. 1, 334–342 (2006)

    Google Scholar 

  33. T. Lin, M.Y. Guang, W. Ping, Y.X. Zong, P.B. Hui, X.L. Xu, H.Y. Yun, Anal. Lett. 41, 2860–2876 (2008)

    Article  CAS  Google Scholar 

  34. E. Laviron, J. Electroanal. Chem. 52, 355–393 (1974)

    Article  CAS  Google Scholar 

  35. K. Giribabu, R. Suresh, R. Manigandan, A. Vijayaraj, R. Prabu, V. Narayanan, Bull. Kor. Chem. Soc. 33, 2910–2916 (2012)

    Article  CAS  Google Scholar 

  36. J.S. Xu, Y.J. Zhu, Crys. Eng. Comm. 14, 2702–2710 (2012)

    Article  CAS  Google Scholar 

  37. S. Bharathi, D. Nataraj, D. Mangalaraj, Y. Masuda, K. Senthil, K. Yong, J. Phys. D Appl. Phys 43(015501), 9 (2010)

    Google Scholar 

  38. Z. Guo, C. Shao, M. Zhang, J. Mu, Z. Zhang, P. Zhang, B. Chen, Y. Liua, J. Mater. Chem. 21, 12083–12088 (2011)

    Article  CAS  Google Scholar 

  39. H. Cao, Y. Xiao, Y. Lu, J. Yin, B. Li, S. Wu, X. Wu, Nano. Res. 3, 863–873 (2010)

    Article  CAS  Google Scholar 

  40. J. Li, X. Zhang, Z. Ai, F. Jia, L. Zhang, J. Lin, J. Phys. Chem. C 111, 6832–6836 (2007)

    Article  CAS  Google Scholar 

  41. C. Chen, W. Zhao, P. Lei, J. Zhao, N. Serpone, Chem. Eur. J. 10, 1956–1965 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R.S. acknowledges the CSIR, New Delhi, India, for the financial assistance in the form of Senior Research Fellowship. The authors acknowledge the FE-SEM facility provided by the National Centre for Nanoscience and Nanotechnology, University of Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Narayanan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suresh, R., Giribabu, K., Manigandan, R. et al. α-Fe2O3 nanoflowers: synthesis, characterization, electrochemical sensing and photocatalytic property. J IRAN CHEM SOC 11, 645–652 (2014). https://doi.org/10.1007/s13738-013-0335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-013-0335-0

Keywords

Navigation