Skip to main content
Log in

Preparation and visible-light photocatalytic activity of Bi5+ doped Bi2WO6 nanoflowers

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Bi5+ doped Bi2WO6 nanoflowers were prepared for the first time by hydrothermal method using sodium bismuth and sodium tungstate as raw materials. The crystal structure, micromorphology, optical absorption and photoelectrochemical properties of the materials were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis spectrum, photocurrent response and electrochemical impedance spectroscopy plots. Using the degradation of Rhodamine B (RhB) under visible light as the reaction model, the effects of Bi5+ doping on the photocatalytic activity of Bi2WO6 nanoflowers were investigated. The results showed that Bi5+ doping reduces the bandgap of Bi2WO6 nanoflowers, and improves the absorption ability of Bi2WO6 nanoflowers in the visible-light region remarkably. The photocatalytic activity of Bi5+ doped Bi2WO6 nanoflowers was promoted significantly, and the degradation efficiency of RhB can reach 96% in 60 min under visible-light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yadav R, Chundawat T S, Rawat P, Rao G K and Vaya D 2021 Bull. Mater. Sci. 44 62

    Article  Google Scholar 

  2. Jada N, Sankaran K J, Sakthivel R, Sethi D and Mohapatra P 2021 Bull. Mater. Sci. 44 167

    Article  CAS  Google Scholar 

  3. Rai R and Molli M 2020 Bull. Mater. Sci. 43 257

    Article  CAS  Google Scholar 

  4. Cheng L, Xiang Q J, Liao Y L and Zhang H W 2018 Energy Environ. Sci. 11 1362

    Article  CAS  Google Scholar 

  5. Yuan Y J, Chen D Q, Yu Z T and Zou Z G 2018 J. Mater. Chem. A 6 11606

    Article  CAS  Google Scholar 

  6. Chandrasekaran S, Yao L, Deng L B, Bowen C, Zhang Y, Chen S M et al 2019 Chem. Soc. Rev. 48 4178

    Article  CAS  Google Scholar 

  7. Liao G F, Gong Y, Zhang L, Gao H Y, Yang G J and Fang B Z 2019 Energy Environ. Sci. 12 2080

    Article  CAS  Google Scholar 

  8. Wang S C, Wang L Z and Huang W 2020 J. Mater. Chem. A 8 24307

    Article  CAS  Google Scholar 

  9. Chen S, Huang D L, Cheng M, Lei L, Chen Y S, Zhou C Y et al 2021 J. Mater. Chem. A 9 196

    Article  CAS  Google Scholar 

  10. Singh P, Yadav R K, Kumar K, Lee Y, Gupta A K, Kumar K et al 2021 Catal. Sci. Technol. 11 6401

    Article  CAS  Google Scholar 

  11. Hu L Y, Xu J, Liu Y and Zhao S 2021 New J. Chem. 45 17984

    Article  CAS  Google Scholar 

  12. Imamura K, Ikeuchi K, Sakamoto Y, Aono Y, Oto T and Onda A 2021 RSC Adv. 11 32300

    Article  CAS  Google Scholar 

  13. Li R N, Ou X Y, Zhang L, Qi Z, Wu X F, Lu C S et al 2021 Chem. Commun. 57 10067

    Article  CAS  Google Scholar 

  14. Fu Y M, Ren Z Q, Guo L X, Li X, Li Y Q, Liu W L et al 2021 J. Mater. Chem. C 9 12596

    Article  CAS  Google Scholar 

  15. Sahoo S S, Mansingh S, Babu P and Parida K 2021 Nanoscale Adv. 3 5487

    Article  CAS  Google Scholar 

  16. Liu Z T, Wang F, Zhang Z G and Min S X 2021 Sustain. Energy Fuels 5 4904

    Article  CAS  Google Scholar 

  17. Li B, Qin Q, Jian C Y, Cai Q and Liu W 2021 Dalton Trans. 50 12957

    Article  CAS  Google Scholar 

  18. Zhou N, Xu X F, Li X, Yao W G, He X H, Dong Y L et al 2021 Analyst 146 5904

    Article  CAS  Google Scholar 

  19. Chu H H, Zheng S S, Li Y, Xu K D, Hong Q S, Li T Y et al 2021 RSC Adv. 11 28908

    Article  CAS  Google Scholar 

  20. Liu Q, Hu Q, Zhai D, Sun Q W, Luo H and Zhang D 2021 J. Mater. Chem. A 9 17841

    Article  CAS  Google Scholar 

  21. Xue H D, Wang F L, Bai Q J, Sun H K, Qu J, Liu P et al 2018 Mater. Lett. 219 148

    Article  CAS  Google Scholar 

  22. He R A, Xu D F, Cheng B, Yu J G and Ho W K 2018 Nanoscale Horiz. 3 464

    Article  CAS  Google Scholar 

  23. Guo X X, Wu D, Long X, Zhang Z H, Wang F L, Ai G H et al 2020 Mater. Charact. 163 110297

    Article  CAS  Google Scholar 

  24. Liang W, Pan J H, Duan X J, Tang H, Xu J and Tang G G 2020 Ceram. Int. 46 3623

    Article  CAS  Google Scholar 

  25. Zhu F Y, Lv Y Z, Li J J, Ding J, Xia X H, Wei L L et al 2020 Chemosphere 252 126577

    Article  CAS  Google Scholar 

  26. Hoang L H, Phu N D, Peng H and Chen X B 2018 J. Alloys Compd. 744 228

    Article  CAS  Google Scholar 

  27. Zhang Y, Wang W X, Guo Y S, Shen Q Q and Liu Z S 2021 J. Phys. Chem. Solids 149 109766

    Article  CAS  Google Scholar 

  28. Kumar A, Sharma G, Kumari A, Guo C S, Naushad M, Vo D N et al 2021 Appl. Catal. B: Environ. 284 119808

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Science and Technology Support Program of Hebei Province (No.15211414), Science and Technology Project of Hebei Education Department (No. ZD2021040) and Functional Materials and Structural Mechanics Innovation Team of Hebei University of Architecture (No. TD202011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KE WANG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DU, C., MA, X., XUE, H. et al. Preparation and visible-light photocatalytic activity of Bi5+ doped Bi2WO6 nanoflowers. Bull Mater Sci 45, 95 (2022). https://doi.org/10.1007/s12034-022-02678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02678-5

Keywords

Navigation