Skip to main content
Log in

Synthesis and vibrational properties of hematite (α-Fe2O3) nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

α- Fe2O3 nanoparticles have been synthesized by gel evaporation method in air at 300°C. The average size of as synthesized α-Fe2O3 nanoparticle was estimated to be 30 nm and the particles were of good crystalline nature. Shape of the nanoparticles were slightly deviated from spherical which is attributed to the asymmetric growth of primary nuclei. MicroRaman and X-ray diffraction results have shown mixed phases of α-Fe2O3 and γ-Fe2O3. However, the α-Fe2O3 phase is more predominant than γ-Fe2O3 due to the incomplete nucleation of α-Fe2O3 particles at the size of 30 nm. The vibrating sample magnetometer measurement shows that the nanoparticles possess ferromagnetic property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Navarotsky, L. Mazeina, J. Majzlan, Science 319, 1635–1639 (2008)

    Article  Google Scholar 

  2. R.M. Cornell, U. Schwertman, The Iron Oxides: properties, Reactions, Occurrences and Uses (VCH, New York, 1996), pp. 1–25

    Google Scholar 

  3. W. Wang, J.Y. Howe, B. Gu, J. Phys. Chem. C. 112, 25–9203 (2008)

    Google Scholar 

  4. R. Zboril, M. Mashlan, D. Petridis, Chem. Mater. 14, 969 (2002)

    Article  CAS  Google Scholar 

  5. N. Pailhe, A. Wattiaux, M. Gaudon, A. Demourgues, J. Solid State Chem. 181, 2697 (2008)

    Article  CAS  Google Scholar 

  6. A. Kay, I. Cesar, M. Gratzel, J. Am. Chem. Soc. 128, 15714 (2006)

    Article  CAS  Google Scholar 

  7. I. Cesar, A. Kay, J.A.G. Martinez, M. Gratzel, J. Am. Chem. Soc. 128, 4582 (2006)

    Article  CAS  Google Scholar 

  8. A. Duret, M. Gratzel, J. Phys. Chem. B 5 109, 17184 (2005)

    Google Scholar 

  9. C. Wu, P. Yin, X. Zhu, C. OuYang, Y. Xie, J. Phys. Chem. B. 110, 17806 (2006)

    Article  CAS  Google Scholar 

  10. H.C. Yang, X.B. Mao, Y.J. Guo, D.W. Wang, G.L. Ge, R. Yang et al., CrystEngComm 12, 1842 (2010)

    Article  CAS  Google Scholar 

  11. S. Wagloehner, D. Reichert, D.L. Sorzano, P. Balle, B. Geiger, S. Kureti, J. Catal. 260, 305 (2008)

    Article  CAS  Google Scholar 

  12. X.L. Hu, J.C. Yu, Adv. Funct. Mater. 18, 880 (2008)

    Article  CAS  Google Scholar 

  13. R. Zboril, M. Mashlan, D. Petridis, Chem. Mater. 14, 969 (2004)

    Article  Google Scholar 

  14. L.H. Han, H. Liu, Y. Wei, Powder Technology. doi:10.1016/j.powtec.2010.10.008 (2010)

  15. S. Akbar, S.K. Hasanain, N. Azmat, M. Nadeem, Condensed Matter 480, 1 (2004)

    Google Scholar 

  16. K. Hiroaki, K. Sridhar, J. Am. Ceram. Soc. 84, 2313 (2001)

    Google Scholar 

  17. M. Ocaña, M.P. Morales, C.J. Serna, J. Colloid Interface Sci. 171, 85 (2002)

    Article  Google Scholar 

  18. L. Lu, L. Li, X. Wang, G. Li, J. Phys. Chem. B 109, 7151 (2005)

    Google Scholar 

  19. P. Ayyub, M. Multani, M. Barma, V.R. Palkar, R. Vijayaraghavan, J. Phys. C: Solid State Phys. 21, 229 (1988)

    Article  Google Scholar 

  20. L.X. Chen, T. Liu, M. Thurnauer, R. Csencsits, T. Rajh, J. Phys. Chem. B 106, 8539 (2002)

    Article  CAS  Google Scholar 

  21. V. Chernyshova, M.F. Hochella Jr, A.S. Madden, Phys.chem.chem.phys. 9, 1736 (2005)

    Article  Google Scholar 

  22. M. Hanesch, Geophys. J. Int. 177, 941 (2009)

    Google Scholar 

  23. A. Zoppi, C. Lofrumento, E.M. Castellucci, Ph. Sciau, J. Raman Spectrosc. 39, 40 (2008)

    Article  CAS  Google Scholar 

  24. I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J.F. Fouquenet, S. Cohen-Jonathan, M. Soucé, H. Marchais, P. Dubois, Analyst 130, 1395 (2005)

    Article  CAS  Google Scholar 

  25. S.J. Oh, D.C. Cook, H.E. Townsend, Corrs. Sci. 41, 1687 (1999)

    Article  CAS  Google Scholar 

  26. G. Grundmeier, M. Stratmann, Appl. Surf. Sci 141, 43 (1999)

    Article  CAS  Google Scholar 

  27. J. Zuo, C. Xu, J. Raman Spectrosc 27, 921 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge nanotechnology center, SRM University for XRD measurement. We thank Dr. R.V. Subba Rao and Dr. R.K. Dayal, Corrosion Science and Technology Division, IGCAR for MicroRaman measurements. We also thank Dr. A.K. Arora, Dr. B.V.R. Tata and Dr. C.S. Sundar, Materials Science Group, IGCAR for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, R., Sohila, S., Muthamizhchelvan, C. et al. Synthesis and vibrational properties of hematite (α-Fe2O3) nanoparticles. J Mater Sci: Mater Electron 22, 1357–1360 (2011). https://doi.org/10.1007/s10854-011-0313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0313-1

Keywords

Navigation