Skip to main content

Advertisement

Log in

Thermoplastic vulcanizates derived from modified natural rubbers and polypropylene

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A thermoplastic vulcanizate (TPV) with improved mechanical properties and recyclability was developed from modified natural rubber (NR) and polypropylene (PP). The modified NRs were prepared through two modification steps, i.e., epoxidation (E) and followed by hydrogenation (H). In addition, two levels of modification were prepared, i.e., one with 17% E and 27% H (HENR-1) and the other 28% E and 25% H (HENR-2). These modified NRs were compounded with vulcanizing agents before subjecting to dynamic vulcanization of the modified NR/PP in an internal mixer. The rubber to PP ratio was fixed at 70:30. Morphological study using scanning electron microscopy showed agglomerations of dispersed vulcanized rubber particles in continuous PP phase. It has been found that TPV of HENR-2/PP exhibits outstanding mechanical properties of tensile strength at 7.84 MPa and elongation-at-break at 171.43%. In addition, the elongation-at-break of HENR-2/PP was further increased when 3 phr of polypropylene-grafted-maleic anhydride (PP-g-MA) was introduced, which might be due to the interaction of MA in PP-g-MA with the epoxide unit of HENR. Reprocessing of HENR/PP TPV showed that the developed TPVs could be reprocessed several times. The obtained results suggest that these HENR/TPVs could offer an alternative way for the utilization and sustainability of NR.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao F, Bi W, Zhao S (2011) Influence of crosslink density on mechanical properties of natural rubber vulcanizates. J Macromol Sci B 50:1460–1469. https://doi.org/10.1080/00222348.2010.507453

    Article  CAS  Google Scholar 

  2. Wemyss AM, Bowen C, Plesse C, Vancaeyzeele C, Nguyen GTM, Vidal F, Wan C (2020) Dynamic crosslinked rubbers for a green future: a material perspective. Mater Sci Eng R Rep 141:100561. https://doi.org/10.1016/j.mser.2020.100561

    Article  Google Scholar 

  3. (IRSG) IRSG (2020): Natural rubber statistics 2020. www.lgm.gov.my/nrstat/Statistics%20Website%202020%20(Jan-Mar).pdf. Accessed 17 Sep 2020

  4. Gursel A, Akca E, Sen N (2018) A review on devulcanization of waste tire rubber. Period Eng Nat 6:154–160

    Google Scholar 

  5. Hejna A, Korol J, Przybysz-Romatowska M, Zedler Ł, Chmielnicki B, Formela K (2020) Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers: A review. Waste Manag 108:106–118. https://doi.org/10.1016/j.wasman.2020.04.032

    Article  CAS  PubMed  Google Scholar 

  6. Zhao TH, Wu Y, Li YD, Wang M, Zeng JB (2017) High performance and thermal processable dicarboxylic acid cured epoxidized plant oil resins through dynamic vulcanization with poly(lactic acid). ACS Sustain Chem Eng 5:1938–1947. https://doi.org/10.1021/acssuschemeng.6b02684

    Article  CAS  Google Scholar 

  7. Bai H, Lu J, Li B, Zhang S, Wang W, Ma P, Dong W (2020) Novel thermoplastic vulcanizates by selectively dynamic cross-linking based on PVDF/PTW blends: structure and property. Polym Plast Technol Eng 59:195–203. https://doi.org/10.1080/25740881.2019.1625394

    Article  CAS  Google Scholar 

  8. Bhattacharya AB, Chatterjee T, Naskar K (2020) Automotive applications of thermoplastic vulcanizates. J Appl Polym Sci 137:49181. https://doi.org/10.1002/app.49181

    Article  CAS  Google Scholar 

  9. Wu H, Tian M, Zhang L, Tian H, Wu Y, Ning N, Chan TW (2015) New understanding of morphology evolution of thermoplastic vulcanizate (TPV) during dynamic vulcanization. Acs Sustain Chem Eng 3:26–32. https://doi.org/10.1021/sc500391g

    Article  CAS  Google Scholar 

  10. Cui R, Ding J, Chen Y (2019) Magnesium acrylate induced interfacial compatibilization of EPDM/PP thermoplastic vulcanizate and shape memory behavior. Compos Part A Appl Sci Manuf 122:27–35. https://doi.org/10.1016/j.compositesa.2019.04.016

    Article  CAS  Google Scholar 

  11. Xu C, Lin B, Liang X, Chen Y (2016) Zinc dimethacrylate induced in situ interfacial compatibilization turns EPDM/PP TPVs into a shape memory material. Ind Eng Chem Res 55:4539–4548. https://doi.org/10.1021/acs.iecr.6b00612

    Article  CAS  Google Scholar 

  12. Rajeshbabu R, Gohs U, Naskar K, Mondal M, Wagenknecht U, Heinrich G (2012) Electron-induced reactive processing of poly(propylene)/ethylene-octene copolymer blends: A novel route to prepare thermoplastic vulcanizates. Macromol Mater Eng 297:659–669. https://doi.org/10.1002/mame.201100209

    Article  CAS  Google Scholar 

  13. Ning N, Li X, Tian H, Hua Y, Zuo H, Yao P, Zhang L, Wu Y, Hu GH, Tian M (2017) Unique microstructure of an oil resistant nitrile butadiene rubber/polypropylene dynamically vulcanized thermoplastic elastomer. Rsc Adv 7:5451–5458. https://doi.org/10.1039/C6RA24891H

    Article  CAS  Google Scholar 

  14. Passador FR, Alzate Rojas GJ, Pessan LA (2013) Thermoplastic elastomers based on natural rubber/polypropylene blends: effect of blend ratios and dynamic vulcanization on rheological, thermal, mechanical, and morphological Properties. J Macromol Sci B 52:1142–1157. https://doi.org/10.1080/00222348.2012.756323

    Article  CAS  Google Scholar 

  15. Bahruddin AA, Prayitno A, Satoto R (2012) Morphology and mechanical properties of palm based fly ash reinforced dynamically vulcanized natural rubber/polypropylene blends. Procedia Chem 4:146–153. https://doi.org/10.1016/j.proche.2012.06.021

    Article  CAS  Google Scholar 

  16. Baker CSL, Gelling IR, Newell R (1985) Epoxidized natural rubber. Rubber Chem Technol 58:67–85. https://doi.org/10.5254/1.3536059

    Article  CAS  Google Scholar 

  17. Nakason C, Wannavilai P, Kaesaman A (2006) Thermoplastic vulcanizates based on epoxidized natural rubber/polypropylene blends: effect of compatibilizers and reactive blending. J Appl Polym Sci 100:4729–4740. https://doi.org/10.1002/app.23260

    Article  CAS  Google Scholar 

  18. Nakason C, Wannavilai P, Kaesaman A (2006) Thermoplastic vulcanizates based on epoxidized natural rubber/polypropylene blends: effect of epoxide levels in ENR molecules. J Appl Polym Sci 101:3046–3052. https://doi.org/10.1002/app.23926

    Article  CAS  Google Scholar 

  19. Samran J, Phinyocheep P, Daniel P, Kittipoom S (2005) Hydrogenation of unsaturated rubbers using diimide as a reducing agent. J Appl Polym Sci 95:16–27. https://doi.org/10.1002/app.20811

    Article  CAS  Google Scholar 

  20. Taksapattanakul K, Tulyapitak T, Phinyocheep P, Ruamcharoen P, Ruamcharoen J, Lagarde F, Edely M, Daniel P (2017) Raman investigation of thermoplastic vulcanizates based on hydrogenated natural rubber/polypropylene blends. Polym Test 57:107–114. https://doi.org/10.1016/j.polymertesting.2016.11.016

    Article  CAS  Google Scholar 

  21. Saengdee L, Phinyocheep P, Daniel P (2020) Chemical modification of natural rubber in latex stage for improved thermal, oil, ozone and mechanical properties. J Polym Res 27:275–288. https://doi.org/10.1007/s10965-020-02246-7

    Article  CAS  Google Scholar 

  22. Tessanan W, Chanthateyanonth R, Yamaguchi M, Phinyocheep P (2020) Improvement of mechanical and impact performance of poly(lactic acid) by renewable modified natural rubber. J Clean Prod 276:123800. https://doi.org/10.1016/j.jclepro.2020.123800

    Article  CAS  Google Scholar 

  23. Babu RR, Singha NK, Naskar K (2010) Effects of mixing sequence on peroxide cured polypropylene (PP)/ethylene octene copolymer (EOC) thermoplastic vulcanizates (TPVs). Part. I. Morphological, mechanical and thermal properties. J Polym Res 17:657–671. https://doi.org/10.1007/s10965-009-9354-z

    Article  CAS  Google Scholar 

  24. Salaeh S, Banda T, Pongdong V, Wießner S, Das A, Thitithammawong A (2018) Compatibilization of poly(vinylidene fluoride)/natural rubber blend by poly(methyl methacrylate) modified natural rubber. Eur Polym J 107:132–142. https://doi.org/10.1016/j.eurpolymj.2018.08.007

    Article  CAS  Google Scholar 

  25. Ikeda Y, Phinyocheep P, Kittipoom S, Ruancharoen J, Kokubo Y, Morita Y, Hijikata K, Kohjiya S (2008) Mechanical characteristics of hydrogenated natural rubber vulcanizates. Polym Adv Technol 19:1608–1615. https://doi.org/10.1002/pat.1176

    Article  CAS  Google Scholar 

  26. Nakason C, Panklieng Y, Kaesaman A (2004) Rheological and thermal properties of thermoplastic natural rubbers based on poly(methyl methacrylate)/epoxidized-natural-rubber blends. J Appl Polym Sci 92:3561–3572. https://doi.org/10.1002/app.20384

    Article  CAS  Google Scholar 

  27. Huang J, Mou W, Wang W, Lv F, Chen Y (2020) Influence of DCP content on the toughness and morphology of fully biobased ternary PLA/NR-PMMA/NR TPVs with co-continuous phase structure. Polym Plast Technol Eng 59:674–684. https://doi.org/10.1080/25740881.2019.1695265

    Article  CAS  Google Scholar 

  28. Paran SMR, Naderi G, Ghoreishy MHR, Heydari A (2018) Enhancement of mechanical, thermal and morphological properties of compatibilized graphene reinforced dynamically vulcanized thermoplastic elastomer vulcanizates based on polyethylene and reclaimed rubber. Compos Sci Technol 161:57–65. https://doi.org/10.1016/j.compscitech.2018.04.006

    Article  CAS  Google Scholar 

  29. Jerrams S, Hanley J, Murphy N, Ali H (2008) Equi-biaxial fatigue of elastomers: The effect of oil swelling on fatigue life. Rubber Chem Technol 81:638–649

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Royal Golden Jubilee Ph.D. Program (Grant No. PHD 0104/2557), Thailand Research Fund for the scholarship to L. Saengdee. The technical support provided by the Rubber Technology Research Centre, Faculty of Science, Mahidol University (Thailand) is very much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranee Phinyocheep.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 804 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saengdee, L., Daniel, P., Amornsakchai, T. et al. Thermoplastic vulcanizates derived from modified natural rubbers and polypropylene. Iran Polym J 31, 287–299 (2022). https://doi.org/10.1007/s13726-021-00998-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00998-7

Keywords

Navigation