Skip to main content

Advertisement

Log in

Fabrication and optimization of bioactive cylindrical scaffold prepared by electrospinning for vascular tissue engineering

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Vascular regeneration is strictly depended on the proliferation and spreading of the injured endothelial cell layer especially in the small diameter vessels. If a substrate is optimized for this application, there will be new hopes to control the vascular wall thickness. Herein, the various strategies including the surface modification, co-electrospinning and blend-electrospinning methods were employed to prepare the nanofibrous scaffolds from polyurethane (PU), gelatin and somatotropin. These protein biomolecules could support the endothelial cell attachment and also their proliferation, respectively. The assays including the scaffold fibers and cell morphologies, mechanical tensile behavior, surface wettability, the cell proliferation and the release kinetic profile confirmed the higher bioactivity of the scaffold which was fabricated by a blend of PU, gelatin and somatotropin agents. This group represented better cell spreading and cell attachment in spite of lower mechanical properties compared to the co-electrospun groups. Regarding this issue, the kinetic model for the release of somatotropin growth factor was an anomalous non-Fickian diffusion due to the impact of polymer relaxation and erosion on the somatotropin release. As a whole, by incorporation of somatotropin in the PU fibers, a sustained release pattern resulted. This controlled release manner of somatotropin enhanced the endothelial cell proliferation that is required for the therapeutic goal of the damaged vessels.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gaziano TA (2005) Cardiovascular disease in the developing world and its cost-effective management. Circulation 112:3547–3553

    Article  PubMed  Google Scholar 

  2. Thomas JH, Pierce GE, Iliopoulos JI, Hermreck AS (1988) Vascular graft selection. Surg Clin N Am 68:865–874

    Article  CAS  PubMed  Google Scholar 

  3. Ercolani E, Del Gaudio C, Bianco A (2015) Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med 9:861–888

    Article  CAS  PubMed  Google Scholar 

  4. Catto V, Farè S, Freddi G, Tanzi MC (2014) Vascular tissue engineering: recent advances in small diameter blood vessel regeneration. Int Sch Res Notices 2014:923030. https://doi.org/10.1155/2014/923030

    Article  CAS  Google Scholar 

  5. Táborská J, Riedelová Z, Brynda E, Májek P, Riedel T (2021) Endothelialization of an ePTFE vessel prosthesis modified with an antithrombogenic fibrin/heparin coating enriched with bound growth factors. RSC Adv 11:5903–5913

    Article  Google Scholar 

  6. Chlupáč J, Filova E, Bačáková L (2009) Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res 58(Suppl 2):S119–S139

    Article  PubMed  Google Scholar 

  7. Chang WG, Niklason LE (2017) A short discourse on vascular tissue engineering. NPJ Regen Med 2:1–8. https://doi.org/10.1038/s41536-017-0011-6

    Article  Google Scholar 

  8. Greco Song H-H, Rumma RT, Ozaki CK, Edelman ER, Chen CS (2018) Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell 22:340–354

    Article  Google Scholar 

  9. Dean EW, Udelsman B, Breuer CK (2012) Current advances in the translation of vascular tissue engineering to the treatment of pediatric congenital heart disease. Yale J Biol Med 85:229–238

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Teebken OE, Haverich A (2002) Tissue engineering of small diameter vascular grafts. Eur J Vasc Endovas Surg 23:475–485

    Article  Google Scholar 

  11. Furukawa KS, Ushida T, Toita K, Sakai Y, Tateishi T (2002) Hybrid of gel-cultured smooth muscle cells with PLLA sponge as a scaffold towards blood vessel regeneration. Cell Transplant 11:475–480

    Article  PubMed  Google Scholar 

  12. Badhe RV, Bijukumar D, Chejara DR, Mabrouk M, Choonara YE, Kumar P, du Toit LC, Kondiah PPD, Pillay V (2017) A composite chitosan-gelatin bi-layered, biomimetic macroporous scaffold for blood vessel tissue engineering. Carbohydr Polym 157:1215–1225

    Article  CAS  PubMed  Google Scholar 

  13. Buttafoco L, Boks NP, Engbers-Buijtenhuijs P, Grijpma DW, Poot AA, Dijkstra PJ, Vermes I, Feijen J (2006) Porous hybrid structures based on P(DLLA-co-TMC) and collagen for tissue engineering of small-diameter blood vessels. J Biomed Mater Res B Appl Biomater 79B:425–434

    Article  CAS  Google Scholar 

  14. Zamanlui S, Mahmoudifard M, Soleimani M, Bakhshandeh B, Vasei M, Faghihi S (2018) Enhanced chondrogenic differentiation of human bone marrow mesenchymal stem cells on PCL/PLGA electrospun with different alignments and compositions. Int J Polym Mater Polym Biomater 67:50–60

    Article  CAS  Google Scholar 

  15. Zamanlui S, Mohammadi Amirabad L, Soleimani M, Faghihi S (2018) Influence of hydrodynamic pressure on chondrogenic differentiation of human bone marrow mesenchymal stem cells cultured in perfusion system. Biologicals 56:1–8

    Article  CAS  PubMed  Google Scholar 

  16. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  17. Luo J, Shi X, Lin Y, Yuan Y, Kural MH, Wang J, Ellis MW, Anderson CW, Zhang S-M, Riaz M, Niklason LE, Qyang Y (2021) Efficient differentiation of human induced pluripotent stem cells into endothelial cells under xenogeneic-free conditions for vascular tissue engineering. Acta Biomater 119:184–196

    Article  CAS  PubMed  Google Scholar 

  18. Kim B-S, Baez CE, Atala A (2000) Biomaterials for tissue engineering. World J Urol 18:2–9

    Article  CAS  PubMed  Google Scholar 

  19. Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci 36:1254–1276

    Article  CAS  Google Scholar 

  20. Kielty CM, Stephan S, Sherratt MJ, Williamson M, Shuttleworth CA (2007) Applying elastic fibre biology in vascular tissue engineering. Philos Trans R Soc B 362:1293–1312

    Article  CAS  Google Scholar 

  21. Mostafavi A, Daemi H, Rajabi S, Baharvand H (2021) Highly tough and ultrafast self-healable dual physically crosslinked sulfated alginate-based polyurethane elastomers for vascular tissue engineering. Carbohydr Polym 257:117632

    Article  CAS  PubMed  Google Scholar 

  22. Piterina AV, Callanan A, Davis L, Meaney C, Walsh M, McGloughlin TM (2009) Extracellular matrices as advanced scaffolds for vascular tissue engineering. Biomed Mater Eng 19:333–348

    CAS  PubMed  Google Scholar 

  23. Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333:664–666

    Article  CAS  PubMed  Google Scholar 

  24. Salehi-Nik N, Amoabediny G, Shokrgozar MA, Mottaghy K, Klein-Nulend J, Zandieh-Doulabi B (2015) Surface modification of silicone tubes by functional carboxyl and amine, but not peroxide groups followed by collagen immobilization improves endothelial cell stability and functionality. Biomed Mater 10:015024

    Article  PubMed  Google Scholar 

  25. Aldana AA, Abraham GA (2017) Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int J Pharm 523:441–453

    Article  CAS  PubMed  Google Scholar 

  26. Lincoln DT, Singal PK, Al-Banaw A (2007) Growth hormone in vascular pathology: neovascularization and expression of receptors is associated with cellular proliferation. Anticancer Res 27:4201–4218

    CAS  PubMed  Google Scholar 

  27. Salehi-Nik N, Amoabediny G, Banikarimi SP, Pouran B, Malaie-Balasi Z, Zandieh-Doulabi B, Klein-Nulend J (2016) Nanoliposomal growth hormone and sodium nitrite release from silicone fibers reduces thrombus formation under flow. Ann Biomed Eng 44:2417–2430

    Article  PubMed  Google Scholar 

  28. Bastami F, Paknejad Z, Jafari M, Salehi M, Rezai Rad M, Khojasteh A (2017) Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: implication for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 72:481–491

    Article  CAS  PubMed  Google Scholar 

  29. Poormohammadian SJ, Darvishi P, Dezfuli AMG (2019) Enhancing natural gas dehydration performance using electrospun nanofibrous sol-gel coated mixed matrix membranes. Korean J Chem Eng 36:914–928

    Article  CAS  Google Scholar 

  30. Hong JH, Jeong EH, Lee HS, Baik DH, Seo SW, Youk JH (2005) Electrospinning of polyurethane/organically modified montmorillonite nanocomposites. J Polym Sci Part B Polyms Phys 43:3171–3177

    Article  CAS  Google Scholar 

  31. Liu Z, Zhao J-h, Liu P, He J-h (2016) Tunable surface morphology of electrospun PMMA fiber using binary solvent. Appl Surf Sci 364:516–521

    Article  CAS  Google Scholar 

  32. Shakeel M, Matthews PC, Graham RS, Waters SL (2013) A continuum model of cell proliferation and nutrient transport in a perfusion bioreactor. Math Med Biol 30:21–44

    Article  PubMed  Google Scholar 

  33. Soliman S, Sant S, Nichol JW, Khabiry M, Traversa E, Khademhosseini A (2011) Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. J Biomed Mater Res A 96:566–574

    Article  PubMed  Google Scholar 

  34. Kim SE, Heo DN, Lee JB, Kim JR, Park SH, Jeon SH, Kwon IK (2009) Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed Mater 4:044106

    Article  PubMed  Google Scholar 

  35. Hosseinzadeh S, Nazari H, Sadegzadeh N, Babaie A, Kabiri M, Tasharrofi N, Soufi Zomorrod M, Soleimani M (2018) Polyethylenimine: a new differentiation factor to endothelial/cardiac tissue. J Cell Biochem 120:1511–1521

    Article  Google Scholar 

  36. Liu M, Sun J, Sun Y, Bock C, Chen Q (2009) Thickness-dependent mechanical properties of polydimethylsiloxane membranes. J Micromech Microeng 19:035028

    Article  Google Scholar 

  37. Khoramgah MS, Ranjbari J, Abbaszadeh H-A, Mirakabad FST, Hatami S, Hosseinzadeh S, Ghanbarian H (2020) Freeze-dried multiscale porous nanofibrous three dimensional scaffolds for bone regenerations. Bioimpacts 10:73–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hosseinzadeh S, Mahmoudifard M, Mohamadyar-Toupkanlou F, Dodel M, Hajarizadeh A, Adabi M, Soleimani M (2016) The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using satellite cells. Bioproc Biosyst Eng 39:1163–1172

    Article  CAS  Google Scholar 

  39. Moon S-I, Jin F, Lee C-J, Tsutsumi S, Hyon S-H (2005) Novel carbon nanotube/poly (l-lactic acid) nanocomposites; their modulus, thermal stability, and electrical conductivity. Macromol Symp 224:287–296

    Article  CAS  Google Scholar 

  40. Chen R, Huang C, Ke Q, He C, Wang H, Mo X (2010) Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids Surf B Biointerfaces 79:315–325

    Article  CAS  PubMed  Google Scholar 

  41. Huhtamäki T, Tian X, Korhonen JT, Ras RH (2018) Surface-wetting characterization using contact-angle measurements. Nat Protoc 13:1521–1538

    Article  PubMed  Google Scholar 

  42. Eddington DT, Puccinelli JP, Beebe DJ (2006) Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sens Actuators B Chem 114:170–172

    Article  CAS  Google Scholar 

  43. Zamiri C, Groves MJ (2005) Stabilization of somatropin by heparin. J Pharm Pharmacol 57:555–564

    Article  CAS  PubMed  Google Scholar 

  44. Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ (2004) Molecular interactions in collagen and chitosan blends. Biomaterials 25:795–801

    Article  CAS  PubMed  Google Scholar 

  45. Nassar MA, El-Sakhawy M, Madkour HMF, El-ziaty AK, Mohamed SA (2014) Novel coating of bagasse paper sheets by gelatin and chitosan. Nord Pulp Paper Res J 29:741–746

    Article  CAS  Google Scholar 

  46. Daffonchio D, Thaveesri J, Verstraete W (1995) Contact angle measurement and cell hydrophobicity of granular sludge from upflow anaerobic sludge bed reactors. Appl Environ Microbiol 61:3676–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vladkova TG (2010) Surface engineered polymeric biomaterials with improved biocontact properties. Int J Polym Sci. https://doi.org/10.1155/2010/296094

    Article  Google Scholar 

  48. Zhu M, Zuo W, Yu H, Yang W, Chen Y (2006) Superhydrophobic surface directly created by electrospinning based on hydrophilic material. J Mater Sci 41:3793–3797

    Article  CAS  Google Scholar 

  49. Roura P, Fort J (2001) Equilibrium of drops on inclined hydrophilic surfaces. Phys Rev E Stat Nonlin Soft Matter Phys 64:011601

    Article  CAS  PubMed  Google Scholar 

  50. Fletcher M, Marshall K (1982) Bubble contact angle method for evaluating substratum interfacial characteristics and its relevance to bacterial attachment. Appl Environ Microbiol 44:184–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang N, Halali MA, de Lannoy C-F (2020) Detection of fouling on electrically conductive membranes by electrical impedance spectroscopy. Sep Purif Technol 242:116823

    Article  CAS  Google Scholar 

  52. Liu D, Abdullah CAC, Sear RP, Keddie JL (2010) Cell adhesion on nanopatterned fibronectin substrates. Soft Matter 6:5408–5416

    Article  CAS  Google Scholar 

  53. Wang W, Caetano G, Ambler WS, Blaker JJ, Frade MA, Mandal P, Diver C, Bártolo P (2016) Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials (Basel) 9:992

    Article  Google Scholar 

  54. Mirakabad FST, Hosseinzadeh S, Abbaszadeh HA, Khoramgah MS, Ghanbarian H, Ranjbari J, Kazemi B (2019) The comparison between the osteogenic differentiation potential of clay-polyacrylonitrile nanocomposite scaffold and graphene-polyacrylonitrile scaffold in human mesenchymal stem cells. Nano Biomed Eng 11:238–253

    Article  CAS  Google Scholar 

  55. Wan X, Bovornchutichai P, Cui Z, O’Neill E, Ye H (2017) Morphological analysis of human umbilical vein endothelial cells co-cultured with ovarian cancer cells in 3D: an oncogenic angiogenesis assay. PLoS One 12:e0180296

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mulder PPMFA, Molema G, Koster S, van der Linden HJ, Verpoorte E (2006) Behaviour of human umbilical vein endothelial cells (HUVEC) cultivated in microfluidic channels. International Conference Microtechnology Med Biology, Okinawa, Japan, 9–12 May. https://doi.org/10.1109/MMB.2006.251515

  57. Xu K, Shuai Q, Li X, Zhang Y, Gao C, Cao L, Hu F, Akaike T, Wang J-X, Gu Z, Yang J (2016) Human VE-cadherin fusion protein as an artificial extracellular matrix enhancing the proliferation and differentiation functions of endothelial cell. Biomacromol 17:756–766

    Article  CAS  Google Scholar 

  58. Cao Y, Lee BH, Peled HB, Venkatraman SS (2016) Synthesis of stiffness-tunable and cell-responsive gelatin–poly (ethylene glycol) hydrogel for three-dimensional cell encapsulation. J Biomed Mater Res A 104:2401–2411

    Article  CAS  PubMed  Google Scholar 

  59. Bak T-Y, Kook M-S, Jung S-C, Kim B-H (2014) Biological effect of gas plasma treatment on CO2 gas foaming/salt leaching fabricated porous polycaprolactone scaffolds in bone tissue engineering. J Nanomater. https://doi.org/10.1155/2014/657542

    Article  Google Scholar 

  60. Yang G, Lin H, Rothrauff BB, Yu S, Tuan RS (2016) Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering. Acta biomater 35:68–76

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ma Z, He W, Yong T, Ramakrishna S (2005) Grafting of gelatin on electrospun poly (caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation. Tissue Eng 11:1149–1158

    Article  CAS  PubMed  Google Scholar 

  62. Yang F, Miao Y, Wang Y, Zhang L-M, Lin X (2017) Electrospun zein/gelatin scaffold-enhanced cell attachment and growth of human periodontal ligament stem cells. Materials (Basel) 10:1168

    Article  Google Scholar 

  63. Li Y-H, Huang Y-D (2007) The study of collagen immobilization on polyurethane by oxygen plasma treatment to enhance cell adhesion and growth. Surf Coat Technol 201:5124–5127

    Article  CAS  Google Scholar 

  64. Hosseinzadeh S, Soleimani M, Rezayat SM, Ai J, Vasei M (2014) The activation of satellite cells by nanofibrous poly ɛ-caprolacton constructs. J Biomater Appl 28:801–812

    Article  PubMed  Google Scholar 

  65. Skotak M, Ragusa J, Gonzalez D, Subramanian A (2011) Improved cellular infiltration into nanofibrous electrospun cross-linked gelatin scaffolds templated with micrometer-sized polyethylene glycol fibers. Biomed Mater 6:055012

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gong Y, Ma Z, Zhou Q, Li J, Gao C, Shen J (2008) Poly(lactic acid) scaffold fabricated by gelatin particle leaching has good biocompatibility for chondrogenesis. J Biomater Sci Polym Ed 19:207–221

    Article  CAS  PubMed  Google Scholar 

  67. Gao H, Gu Y, Ping Q (2007) The implantable 5-fluorouracil-loaded poly (l-lactic acid) fibers prepared by wet-spinning from suspension. J Control Release 118:325–332

    Article  CAS  PubMed  Google Scholar 

  68. Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B, Hadjiargyrou M (2004) Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 98:47–56

    Article  CAS  PubMed  Google Scholar 

  69. Xu X, Zhong W, Zhou S, Trajtman A, Alfa M (2010) Electrospun PEG–PLA nanofibrous membrane for sustained release of hydrophilic antibiotics. J Appl Polym Sci 118:588–595

    Article  CAS  Google Scholar 

  70. Salehi-Nik N, Malaie-Balasi Z, Amoabediny G, Banikarimi SP, Zandieh-Doulabi B, Klein-Nulend J (2017) Sustained release of growth hormone and sodium nitrite from biomimetic collagen coating immobilized on silicone tubes improves endothelialization. Mater Sci Eng C Mater Biol Appl 77:1204–1215

    Article  CAS  PubMed  Google Scholar 

  71. da Silveira GA, Machado DC, Rodrigo Marinovic D, Pagnoncelli RM (2017) Assessment of adhesion and proliferation of bone marrow mesenchymal stem cells in polymer matrices with rhGH. Int J Oral Maxillofac Implants 32:e183–e189

    Article  Google Scholar 

  72. Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE (2014) Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. BioMed Res Int 2014:921905

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gagandeep GT, Malik B, Rath G, Goyal AK (2014) Development and characterization of nano-fiber patch for the treatment of glaucoma. Eur J Pharm Sci 53:10–16

    Article  CAS  PubMed  Google Scholar 

  74. Liang K, Li XC, Tay BK (2013) Study of bone morphogenetic protein-2 delivery with different TiO2 nanotube structures. Nanosci Nanotechnol Lett 5:162–166

    Article  CAS  Google Scholar 

  75. Buijs J, Britt DW, Hlady V (1998) Human growth hormone adsorption kinetics and conformation on self-assembled monolayers. Langmuir 14:335–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Meghdadi M, Atyabi S-M, Pezeshki-Modaress M, Irani S, Noormohammadi Z, Zandi M (2019) Cold atmospheric plasma as a promising approach for gelatin immobilization on poly (ε-caprolactone) electrospun scaffolds. Prog Biomater 8:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee J, Yoo JJ, Atala A, Lee SJ (2012) Controlled heparin conjugation on electrospun poly (ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity. Acta Biomater 8:2549–2558

    Article  CAS  PubMed  Google Scholar 

  78. Solomon KD, Ong JL (2013) Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells. Thin Solid Films 537:256–262

    Article  CAS  Google Scholar 

  79. Bose PSC, Reddy PS, Ravi V, Sarita D, Kumar TMP (2011) Formulation and evaluation of sustained release of floating tablets of diltiazem HCl using xanthan gum. Res J Pharm Bio Chem Sci 2:319–328

    CAS  Google Scholar 

  80. Nguyen TTT, Ghosh C, Hwang S-G, Chanunpanich N, Park JS (2012) Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system. Int J Pharm 439:296–306

    Article  CAS  PubMed  Google Scholar 

  81. Shi M, Kretlow JD, Spicer PP, Tabata Y, Demian N, Wong ME, Kasper FK, Mikos AG (2011) Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering. J Control Release 152:196–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hosseinzadeh S, Esnaashari S, Sadeghpour O, Hamedi S (2016) Predictive modeling of phenolic compound release from nanofibers of electrospun networks for application in periodontal disease. J Polym Eng 36:457–464

    Article  CAS  Google Scholar 

  83. Conti S, Maggi L, Segale L, Machiste EO, Conte U, Grenier P, Vergnault G (2007) Matrices containing NaCMC and HPMC: 1. Dissolution performance characterization. Int J Pharm 333:136–142

    Article  CAS  PubMed  Google Scholar 

  84. Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67:217–223

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was benefitted from a grant of Shahid Beheshti University of Medical Sciences with the ethical number of IR.SBMU.RETECH.REC.1395.53 and ID number of 9190.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simzar Hosseinzadeh or Nasim Salehi-Nik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, S., Zarei-Behjani, Z., Bohlouli, M. et al. Fabrication and optimization of bioactive cylindrical scaffold prepared by electrospinning for vascular tissue engineering. Iran Polym J 31, 127–141 (2022). https://doi.org/10.1007/s13726-021-00983-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00983-0

Keywords

Navigation