Skip to main content
Log in

Fabrication Process of Triple-Layer Small-Diameter Vascular Scaffold with Microchannel Structure in the Inner Layer for Accelerated Endothelialization

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Nowadays, many studies focus on the preparation of small-diameter vascular scaffolds, but some issues still existed that need to be urgently solved, but there are still problems such as slow endothelialization and failure to keep the vessels open for a long time that need to be solved. In this paper, a composite process of preparing triple-layer vascular scaffolds with microchannel structure in the inner layer is proposed to guide cell growth and accelerate the endothelialization process. The PCL pattern was printed as the intermediate layer of the vascular scaffold by 3D printing method, and the width of the microchannel in the inner layer of the scaffold was controlled by the printing spacing. The inner and outer layers were prepared by electrospinning. Heparin is often used as an anticoagulant in vascular tissue engineering to improve the problem of thrombosis and blockage of vascular scaffold after transplantation into the body. Here, the inner layer carries heparin immobilized with silk fibroin by coaxial electrospinning, so that heparin can be released slowly. The addition of silk fibroin also improved the hydrophilicity of PCL electrospinning film by water contact angle test. The mechanical properties of vascular scaffolds with double intermediate layers (DIL) are better than those with single intermediate layers (SIL) and also better than pure electrospinning scaffolds. In vitro cell experiments showed that cells grow directionally on microchannel structures of inner layer and randomly on electrospinning film without microchannel structure. The results showed that the microchannels were more conducive to cell growth and proliferation at a diameter of 0.25 mm. The composite electrospinning films with silk fibroin and heparin facilitated cell adhesion and proliferation compared to the pure PCL films. All these results indicate that the vascular scaffolds have potential applications in clinic for vascular tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Jørgensen, S. Capewell, E. Prescott, S. Allender, S. Sans, T. Zdrojewski, D. DeBacquer, J. de Sutter, O.H. Franco, S. Løgstrup, M. Volpe, S. Malyutina, P. Marques-Vidal, G.S. Reiner, W.M.M. Tell, D.V. Verschuren, Population-level changes to promote cardiovascular health. Eur J Prev Cardiol. 20(3), 409–421 (2013)

    PubMed  Google Scholar 

  2. Z. Zhang, B. Wang, D. Hui, J. Qiu, S. Wang, 3D bioprinting of soft materials-based regenerative vascular structures and tissues. Compos. B. Eng. 123, 279–291 (2017)

    CAS  Google Scholar 

  3. S. Esmaeili, M. Shahali, A. Kordjamshidi, Z. Torkpoor, F. Namdari, S.S. Samandari, M.G. Nejad, A. Khandan, An artificial blood vessel fabricated by 3D printing for pharmaceutical application. Nanomed 6(3), 183–194 (2019)

    CAS  Google Scholar 

  4. O.E. Teebken, A. Haverich, Tissue Engineering of Small Diameter Vascular Grafts. Eur J Vasc Endovasc Surg 23, 475–485 (2002)

    PubMed  Google Scholar 

  5. A.C. Thomas, G.R. Campbell, J.H. Campbell, Advances in vascular tissue engineering. J Cardiovasc. Pathol. 12(5), 271–276 (2003)

    CAS  Google Scholar 

  6. S. Park, J. Kim, M.K. Lee, C. Park, H.D. Jung, H.E. Kim, T.S. Jang, Fabrication of strong, bioactive vascular grafts with PCL/collagen and PCL/silica bilayers for small-diameter vascular applications. Mater. Des. 181(5), 108079 (2019)

    CAS  Google Scholar 

  7. H. Kuang, S. Yang, Y. Wang, Y. He, K. Ye, J. Hu, Electrospun Bilayer Composite Vascular Graft with an Inner Layer Modified by Polyethylene Glycol and Haparin to Regenerate the Blood Vessel. J Biomed Nanotechnol 15(1), 77–84 (2019)

    CAS  PubMed  Google Scholar 

  8. X. Zhikai Tan, T. Gao, Y. Liu, J.Z. Yang, C. Tong, Electrospun vein grafts with high cell infiltration for vascular tissue engineering. Mater. Sci. Eng. C 81, 407–415 (2017)

    Google Scholar 

  9. H.Y. Mi, Y. Jiang, X. Jing, E. Enriquez, H. Li, Q. Li, L.S. Turng, Fabrication of triple layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties. Mater. Sci. Eng. C 98, 241–249 (2019)

    CAS  Google Scholar 

  10. C.A. Wilkens, C.J. Rivet, T.L. Akentjew, J. Alverio, M. Khoury, J.P. Acevedo, Layer-by-layer approach for a uniformed fabrication of a cell patterned vessel-like construct. Biofabrication 9(1), 015001 (2016)

    PubMed  Google Scholar 

  11. P. Wang, Y. Sun, X. Shi, H. Shen, H. Ning, H. Liu, 3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Bio-des. Manuf. 4, 344–378 (2021)

    Google Scholar 

  12. Q. Saad, Z. Muhammad, N. Shariq, K. Zohaib, S. Altaf, H. Shehriar, R. Ihtesham, Electrospinning of Chitosan-Based Solutions for Tissue Engineering and Regenerative Medicine. Int. J. Mol. Sci. 19(2), 407 (2018)

    Google Scholar 

  13. Z.H. Wang, C.G. Liu, D. Zhu, X. Gu, Y. Xu, Q.H. Qin, N.G. Dong, S.M. Zhang, J.L. Wang, Untangling the co-effects of oriented nanotopography and sustained anticoagulation in a biomimetic intima on neovessel remodeling. Biomaterials 231, 119654 (2020)

    CAS  PubMed  Google Scholar 

  14. J. Yoon, H.S. Yang, B.S. Lee, W.R. Yu, Recent Progress in Coaxial Electrospinning: New Parameters, Various Structures, and Wide Applications. Adv. Mater. 30(42), 1704765 (2018)

    Google Scholar 

  15. J. Wang, M. Windbergs, Controlled dual drug release by coaxial electrospun fibers-Impact of the core fluid on drug encapsulation and release-ScienceDirect. Int. J. Pharm. 556, 363–371 (2019)

    CAS  PubMed  Google Scholar 

  16. B. Pant, M. Park, S.J. Park, Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review. Pharmaceutics 11(7), 305 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. H.J. Li, W.G. Fan, X. Zhu, Three-dimensional printing: The potential technology widely used in medical fields. J Biomed Mater Res A 108(11), 2217–2229 (2020)

    CAS  PubMed  Google Scholar 

  18. J.L. Sang, N.H. Dong, S.P. Ji, S.K. Kwon, H.L. Jin, J.H. Lee, D.K. Wan, K.I. Keun, A.P. Su, Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system. Phys. Chem. Chem. Phys. 17(5), 2996–2999 (2015)

    Google Scholar 

  19. S. Sarkar, G.Y. Lee, J.Y. Wong, T.A. Desai, Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Biomaterials 27(27), 4775–4782 (2006)

    CAS  PubMed  Google Scholar 

  20. Z. Zhang, B. Wang, D. Hui, J. Qiu, S. Wang, 3D bioprinting of soft materials-based regenerative vascular structures and tissues-ScienceDirect. Compos. B. Eng. 123, 279–291 (2017)

    CAS  Google Scholar 

  21. L. Bao, F.F. Hong, G. Li, G. Hu, L. Chen, Improved Performance of Bacterial Nanocellulose Conduits by the Introduction of Silk Fibroin Nanoparticles and Heparin for Small-Caliber Vascular Graft Applications. Biomacromol 22(2), 353–364 (2021)

    CAS  Google Scholar 

  22. T. Tanaka, Y. Abe, C.J. Cheng, R. Tanaka, T. Asakura, Development of Small-Diameter Elastin-Silk Fibroin Vascular Grafts. Front. Bioeng. Biotechnol. 8, 622220 (2021)

    PubMed  PubMed Central  Google Scholar 

  23. L. Liu, S. Zhang, J. Huang, Progress in modification of silk fibroin fiber. Sci. China Technol. Sci. 62(6), 919–930 (2019)

    CAS  Google Scholar 

  24. M.K. Debari, C.I. King, T.A. Altgold, R.D. Abbott, Silk Fibroin as a Green Material. ACS Biomater. Sci. Eng. 7(8), 3530–3544 (2021)

    CAS  PubMed  Google Scholar 

  25. W.H. Park, W.S. Ha, H. Ito, T. Miyamoto, H. Inagaki, Y. Noishiki, Relationships between antithrombogenicity and surface free energy of regenerated silk fibroin films. Fibers Polym. 2, 58–63 (2001)

    CAS  Google Scholar 

  26. Y. Yao, J. Wang, Y. Cui, R. Xu, Z. Wang, J. Zhang, K. Wang, Y. Li, Q. Zhao, D. Kong, Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomater. 10(6), 2739 (2014)

    CAS  PubMed  Google Scholar 

  27. M.A. Woodruff, D.W. Hutmacher, The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog. Polym. Sci. 35(10), 1217–1256 (2010)

    CAS  Google Scholar 

  28. H.L. Khor, K.W. Ng, J.T. Schantz, T.T. Phan, T.C. Lim, S.H. Teoh, D.W. Hutmacher, Poly(ε-caprolactone) films as a potential substrate for tissue engineering an epidermal equivalent. Mater. Sci. Eng. C 20(1), 71–75 (2002)

    Google Scholar 

  29. S.J. Lee, M.E. Kim, H. Nah, J.M. Seok, M.H. Jeong, K. Park, K. Kwon, J.S. Lee, S.A. Park, Vascular endothelial growth factor immobilized on mussel-inspired three-dimensional bilayered scaffold for artificial vascular graft application: In vitro and in vivo evaluations. J. Colloid Interface Sci. 537, 333–344 (2019)

    CAS  PubMed  Google Scholar 

  30. A.R. Park, Y.H. Park, H.J. Kim, M.K. Kim, S.G. Kim, H. Kweon, S.C. Kundu, Tri-layered silk fibroin and poly-ɛ -caprolactone small diameter vascular grafts tested in vitro and in vivo. Macromol Res 23(10), 924–936 (2015)

    CAS  Google Scholar 

  31. R. Singh, D. Eitler, R. Morelle, R.P. Friedrich, I. Cicha, Optimization of cell seeding on the electrospun PCL-silk fibroin scaffolds. Eur. Polym. J. 134, 109838 (2020)

    CAS  Google Scholar 

  32. S. Khazaei, S.A. Mozaffari, F. Ebrahimi, Polyvinyl alcohol as a crucial omissible polymer to fabricate an impedimetric glucose biosensor based on hierarchical 3D-NPZnO/chitosan. Carbohydr. Polym. 266, 118105 (2021)

    CAS  PubMed  Google Scholar 

  33. S.K. Norouzi, A. Shamloo, Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze-drying methods. Mater. Sci. Eng. C 94, 1067–1076 (2019)

    CAS  Google Scholar 

  34. S. Akbari, D. Mohebbi-Kalhori, A. Samimi, Effect of corrugated structure on the collapsing of the small-diameter vascular scaffolds. J Biomater Appl 34(10), 1355–1367 (2020)

    PubMed  Google Scholar 

  35. C. Liu, Research progress in electrospinning process. Synthetic Fiber Ind 35(2), 53–56 (2012)

    CAS  Google Scholar 

  36. B. Zxa, A. Hl, A. Qz, A. Yn, Z.A. Di, Silk Fibroin/Polydopamine Modified Nanocapsules for High-Performance Adhesion. Colloids Surf. A Physicochem. Eng. Asp. 646, 128951 (2022)

    Google Scholar 

  37. B. Gefa, A. Hh, A. Xm, A. Hw, Fabrication of scaffold based on gelatin and polycaprolactone (PCL) for wound dressing application. J Drug Deliv. Sci. Tec. 42, 3321 (2021)

    Google Scholar 

  38. M. Fallah, S.H. Bahrami, M. Ranjbar-Mohammadi, Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial properties. J Ind. Text. 42, 533–535 (2015)

    Google Scholar 

  39. S. Singh, B.M. Wu, J.C. Dunn, The enhancement of VEGF-mediated angiogenesis by polycaprolactone scaffolds with surface cross-linked heparin. Biomaterials 32(8), 2059–2069 (2011)

    CAS  PubMed  Google Scholar 

  40. E. Pektok, B. Nottelet, J.C. Tille, R. Gurny, A. Kalangos, M. Moeller, B.H. Walpoth, Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 118(24), 2563–2570 (2008)

    CAS  PubMed  Google Scholar 

  41. D. Jin, J. Hu, D. Xia, H. Kuang, J. Du, X. Mo, M. Yin, Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo. Int. J. Nanomed 14, 4261 (2019)

    CAS  Google Scholar 

  42. R.S. More, M.J. Brack, A.H. Gershlick, Heparin after angioplasty: an unresolved issue? Eur. Heart J. 14, 1543–1547 (1993)

    CAS  PubMed  Google Scholar 

  43. S. Jia, Q. Chen, Y. Yan, Application of heparin in surface modification of small-caliber artificial blood vessels. Chin J Med Phys 35(10), 1236–1240 (2018)

    Google Scholar 

  44. L.E. Niklason, J. Gao, W.M. Abbott, Functional Arteries Grown in Vitro. Science 284(5413), 489–493 (1999)

    CAS  PubMed  Google Scholar 

  45. T. Eufrásio-da-Silva, E. Ruiz-Hernandez, J. O’Dwyer, D. Picazo-Frutos, G.P. Duffy, B.P. Murphy, Enhancing medial layer recellularization of tissue-engineered blood vessels using radial microchannels. Regen. Med. 14(11), 1014 (2019)

    Google Scholar 

  46. H. Onoe, T. Okitsu, A. Itou, M. Kato-Negishi, R. Gojo, D. Kiriya, K. Sato, S. Miura, S. Iwanaga, K. Kuribayashi-Shigetomi, Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12(6), 584–590 (2013)

    CAS  PubMed  Google Scholar 

  47. X. Lin, D. Tang, H. Lyu, Q. Zhang, Poly(N-isopropylacrylamide)/polyurethane core-sheath nanofibers by coaxial electrospinning for drug controlled release. Micro Nano Lett. 11(5), 260–263 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the National Natural Science Foundation of China (grant no. 52175474).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaxuan Feng, Rui Feng or Haiguang Zhang.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Wang, Q., Liu, S. et al. Fabrication Process of Triple-Layer Small-Diameter Vascular Scaffold with Microchannel Structure in the Inner Layer for Accelerated Endothelialization. Fibers Polym 24, 469–482 (2023). https://doi.org/10.1007/s12221-023-00094-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00094-y

Keywords

Navigation