Skip to main content
Log in

A disentangled state using TiCl4/MgCl2 catalyst: a case study of polyethylene

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Fully entangled morphology which is usually expected for polyethylene produced using Ziegler–Natta (ZN) catalyst is due to the presence of active sites crowded on catalyst’s support surface as well as within its volume. In this research, the feasibility of producing disentangled, more precisely less entangled, polyethylene using a heterogeneous ZN catalyst supported on magnesium chloride, TiCl4/MgCl2, is introduced. Polymerization was carried out at rather low temperature and pressure, and the nascent polymer was characterized to investigate its entanglement state. The rheological measurements, at small amplitude oscillating in the time sweep mode, exhibited a rather good modulus build-up, demonstrating the nascent polymer in its dis(less)-entangled state. Tape and film samples were prepared from the synthesized polyethylene below its melting point to keep the morphology untapped. The solid-state drawability test was performed on the samples at 100 °C showing its improved drawability. Thus, it could be concluded that the polyethylene synthesized at rather low temperature of 0 °C and longer polymerization time was in disentangled state. Furthermore, a rheometrical analysis in frequency mode was used to estimate the molecular weight and molecular weight distribution of the synthesized polyethylene qualitatively. From X-ray diffraction patterns the existence of a small amount of hexagonal phase in the nascent polymer could be detected, which may be due to the formation of extended chains during polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gupta S, Riyad MF (2016) Synthesis and tribological behavior of novel UHMWPE-Ti3SiC2 composites. Polym Compos 39:254–262

    Article  CAS  Google Scholar 

  2. Vadivel HS, Golchin A, Emami N (2018) Tribological behaviour of carbon filled hybrid UHMWPE composites in water. Tribol Int 124:169–177

    Article  CAS  Google Scholar 

  3. Wang Q, Wang H, Wang Y, Yan F (2016) Modification effects of short carbon fibers on mechanical properties and fretting wear behavior of UHMWPE composites. Surf Interface Anal 48:139–145

    Article  CAS  Google Scholar 

  4. Ravanbakhsh S, Rezaei M, Sheikh N, Heidari A (2010) Irradiation grafting of methyl methacrylate monomer onto ultra-high-molecular-weight polyethylene: an experimental design approach for improving adhesion to bone cement. J Appl Polym Sci 116:886–894

    CAS  Google Scholar 

  5. SM Kurtz (2009) Ultra high molecular weight polyethylene in total joint replacement and medical devices, in: UHMWPE biomaterials handbook.8:98. Academic Press, USA

    Google Scholar 

  6. Rastogi S, Lippits DR, Peters GWM, Graf R, Yao Y, Spiess HW (2005) Heterogeneity in polymer melts from melting of polymer crystals. Nat Mater 4:635–641

    Article  CAS  PubMed  Google Scholar 

  7. Smith P, Lemstra PJ (1980) Ultra-drawing of high molecular weight polyethylene cast from solution. Colloid Polym Sci 258:891–894

    Article  CAS  Google Scholar 

  8. Talebi S(2008) Technische Universiteit Eindhoven, Eindhoven, The Netherlands

  9. Kurelec L, Rastogi S, Meier RJ, Lemstra PJ (2000) Chain mobility in polymer systems: on the borderline between solid and melt. 3. Phase transformations in nascent ultrahigh molecular weight polyethylene reactor powder at elevated pressure as revealed by in situ Raman spectroscopy. Macromolecules 33:5593–5601

    Article  CAS  Google Scholar 

  10. Pandey A, Champouret Y, Rastogi S (2011) Heterogeneity in the distribution of entanglement density during polymerization in disentangled ultrahigh molecular weight polyethylene. Macromolecules 44:4952–4960

    Article  CAS  Google Scholar 

  11. Rastogi S, Yao Y, Lippits DR, Hhne GWH, Graf R, Spiess HW, Lemstra PJ (2009) Segmental mobility in the non-crystalline regions of semicrystalline polymers and its implications on melting. Macromol Rapid Commun 30:826–839

    Article  CAS  PubMed  Google Scholar 

  12. Romano D, Ronca S, Rastogi S (2015) A hemi-metallocene chromium catalyst with trimethylaluminum-free methylaluminoxane for the synthesis of disentangled ultra-high molecular weight polyethylene. Macromol Rapid Commun 36:327–331

    Article  CAS  PubMed  Google Scholar 

  13. Talebi S, Duchateau R, Rastogi S, Kaschta J, Peters GWM, Lemstra PJ (2010) Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst. Macromolecules 43:2780–2788

    Article  CAS  Google Scholar 

  14. Lippits DR, Rastogi S, Talebi S, Bailly C (2006) Formation of entanglements in initially disentangled polymer melts. Macromolecules 39:8882–8885

    Article  CAS  Google Scholar 

  15. Ronca S, Forte G, Tjaden H, Yao Y, Rastogi S (2012) Tailoring molecular structure via nanoparticles for solvent-free processing of ultra-high molecular weight polyethylene composites. Polymer 53:2897–2907

    Article  CAS  Google Scholar 

  16. Kaminsky W, Funck A, Klinke C (2008) In-situ polymerization of olefins on nanoparticles or fibers by metallocene catalysts. Top Catal 48:84

    Article  CAS  Google Scholar 

  17. .Heidari A, Talebi S, Rezaei M, Keshavarz-Mirzamohamadi H, Jafariyeh-Yazdi E (2018) In situ synthesis of ultrahigh molecular weight polyethylene/graphene oxide nanocomposite using the immobilized single-site catalyst. Polym Plast Technol Eng 17:1313–1324

    Article  CAS  Google Scholar 

  18. Li W, Yang H, Zhang J, Mu J, Gong D, Wang X (2016) Immobilization of isolated FI catalyst on polyhedral oligomeric silsesquioxane-functionalized silica for the synthesis of weakly entangled polyethylene. Chem Commun 52:11092–11095

    Article  CAS  Google Scholar 

  19. Entezami A, Najafi Moghadam P (2005) Supported zirconocene catalyst for preventing reactor fouling in ethylene polymerization. Polym Int 54:1326–1329

    Article  CAS  Google Scholar 

  20. Alexandre M, Martin E, Dubois P, Marti MG, Jerome R (2000) Use of metallocenes in the polymerization-filling technique with production of polyolefin-based composites. Macromol Rapid Commun 21:931–936

    Article  CAS  Google Scholar 

  21. Redzic E, Garoff T, Mardare CC, List M, Hesser G, Mayrhofer L, Hassel AW, Paulik C (2016) Heterogeneous Ziegler–Natta catalysts with various sizes of MgCl2 crystallites: synthesis and characterization. Iran Polym J 25:321–337

    Article  CAS  Google Scholar 

  22. Kissin YV, Mink R, Nowlin T (1999) Ethylene polymerization reactions with Ziegler–Natta catalysts. I. Ethylene polymerization kinetics and kinetic mechanism. J Polym Sci A Polym Chem 37:4255–4272

    Article  CAS  Google Scholar 

  23. Kissin YV, Mirabella FM, Meverden CC (2005) Multi-center nature of heterogeneous Ziegler–Natta catalysts: TREF confirmation. J Polym Sci A Polym Chem 43:4351–4362

    Article  CAS  Google Scholar 

  24. Ferry JD (1980) Viscoelastic properties of polymers 10:243. Wiley, USA

    Google Scholar 

  25. Dealy JM, Larson RG (2006) Structure and rheology of molten polymers, 5. Hanser, Munich, p 152

    Book  Google Scholar 

  26. Li W, Guan C, Xu J, Mu J, Gong D, Chen Z, Zhou Q (2014) Disentangled UHMWPE/POSS nanocomposites prepared by ethylene in situ polymerization. Polymer 55:1792–1798

    Article  CAS  Google Scholar 

  27. Suzuki Y, Terao H, Fujita T (2003) Recent advances in phenoxy-based catalysts for olefin polymerization. Bull Chem Soc Jpn 76:1493–1517

    Article  CAS  Google Scholar 

  28. Furuyama R, Saito J, Ishii S, Makio H, Mitani M, Tanaka H, Fujita T (2005) Fluorinated bis (phenoxy-imine) Ti complexes with MAO: remarkable catalysts for living ethylene and syndioselective living propylene polymerization. J Organomet Chem 690:4398–4413

    Article  CAS  Google Scholar 

  29. Shirkavand MJ, Azizi H, Ghasemi I, Karrabi M, Rashedi R (2015) A correlation between microstructure and rheological properties of broad MWD high-density polyethylene. Iran Polym J 24:953–963

    Article  CAS  Google Scholar 

  30. Men Y, Rieger J, Endeler HF, Lilge D (2003) Mechanical α-process in polyethylene. Macromolecules 36:4689–4691

    Article  CAS  Google Scholar 

  31. Ward IM, Hadley DW (1993) An introduction to the mechanical properties of solid polymers.10:280. Wiley, USA

    Google Scholar 

  32. Hu WG, Schmidt-Rohr K (1999) Polymer ultradrawability: the crucial role of α-relaxation chain mobility in the crystallites. Acta Polym 50:271–285

    Article  CAS  Google Scholar 

  33. Ronca S, Romano D, Forte G, Andabloâ Reyes E, Rastogi S (2012) Improving the performance of a catalytic system for the synthesis of ultra high molecular weight polyethylene with a reduced number of entanglements. Adv Polym Tech 31:193–204

    Article  CAS  Google Scholar 

  34. Capaccio G, Ward I (1974) Preparation of ultra-high modulus linear polyethylenes; effect of molecular weight and molecular weight distribution on drawing behaviour and mechanical properties. Polymer 15:233–238

    Article  CAS  Google Scholar 

  35. Yamamoto T, Miyaji H, Asai K (1977) Structure and properties of high pressure phase of polyethylene. Jpn J Appl Phys 16:1891

    Article  CAS  Google Scholar 

  36. Kakiage M, Yamanobe T, Komoto T, Murakami S, Uehara H (2006) Transient crystallization during drawing from ultra-high molecular weight polyethylene melts having different entanglement characteristics. Polymer 47:8053–8060

    Article  CAS  Google Scholar 

  37. Uehara H, Kanamoto T, Kawaguchi A, Murakami S (1996) Real-time X-ray diffraction study on two-stage drawing of ultra-high molecular weight polyethylene reactor powder above the static melting temperature. Macromolecules 29:1540–1547

    Article  CAS  Google Scholar 

  38. Hosseinnezhad R, Talebi S, Rezaei M (2016) The unique effect of chain entanglements and particle morphology on the sintering of ultrahigh molecular weight polyethylene. J Elastomers Plast 49:609–629

    Article  CAS  Google Scholar 

  39. Pereira RA, Dias ML, Mano EB (2000) Orthorhombic-hexagonal phase transition in high density polyethylene crystals. Intern J Polym Mater 45:69–78

    Article  CAS  Google Scholar 

  40. Rastogi S, Odell JA (1993) Stress stabilization of the orthorhombic and hexagonal phases of UHM PE gel-spun fibres. Polymer 34:1523–1527

    Article  CAS  Google Scholar 

  41. Gedde ULF (2013) Polymer physics. Springer, Germany

    Google Scholar 

  42. Zachariades AE, Kanamoto T (1986) The effect of initial morphology on the mechanical properties of ultra-high molecular weight polyethylene. Polym Eng Sci 26:658–661

    Article  CAS  Google Scholar 

  43. Ivan’kova EM, Myasnikova LP, Marikhin VA, Baulin AA, Volchek BZ (2001) On the memory effect in UHMWPE nascent powders. J Macromol Sci Ph 40:813–832

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Talebi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 551 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, A., Zarghami, H., Talebi, S. et al. A disentangled state using TiCl4/MgCl2 catalyst: a case study of polyethylene. Iran Polym J 27, 701–708 (2018). https://doi.org/10.1007/s13726-018-0648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0648-z

Keywords

Navigation