Skip to main content
Log in

A correlation between microstructure and rheological properties of broad MWD high-density polyethylene

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A correlation between molecular structure parameters and rheological behavior was determined for three different grades of high-density polyethylene (HDPE). The molecular structure parameters including number-average molecular weight (M n ), weight-average molecular weight (M w ), molecular weight distribution (MWD) and branching index were characterized by gel permeation chromatography (GPC). Moreover, a fast and easy method for investigating side chain branching using Fourier transform infrared (FTIR) spectroscopy was discussed. The rheological characterizations of both linear and non-linear viscoelastic regions were performed by a modular compact rheometer (MCR) in the dynamic mode. Zero shear viscosity (η 0), relaxation time, relaxation time distribution, stress relaxation modulus and damping function were obtained from the rheological characterization. Moreover, molecular weight distribution was calculated for each sample and compared with the GPC results. The GPC results confirmed broad molecular weight distribution for all three HDPE samples. The relationship between zero shear viscosity and molecular weight at 180 °C was found as \(\eta_{0} = 2.5 \times 10^{ - 14} M_{w}^{3.6}\) and for zero shear viscosity and MWD at 180 °C was found as \(\eta_{0} = 1.6 \times 10^{ - 15} M_{w}^{3.6} \left( {\frac{{M_{w} }}{{M_{n} }}} \right)\). By choosing the mixing parameter (β) value of 0.73, the values of molecular parameters obtained from the rheology and GPC tests were significantly accommodated. Furthermore, it was found that the damping function of type C was an appropriate type for the polyethylenes of selected broad MWD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sugimoto M, Suzuki Y, Hyun K, Ahn KH, Ushioda T, Nishioka A, Taniguchi T, Koyama K (2006) Melt rheology of long-chain-branched polypropylenes. Rheol Acta 46:33–44

    Article  Google Scholar 

  2. Lotti C, Isaac CS, Branciforti MC, Alves RMV, Liberman S, Bretas RES (2008) Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. Eur Polym J 44:1346–1357

    Article  CAS  Google Scholar 

  3. Eskandari Jam J, Nekoomanesh M, Ahmadi M, Arabi H (2012) From molecular weight distribution to linear viscoelastic properties and back again: application to some commercial high-density polyethylenes. Iran Polym J 21:403–413

    Article  Google Scholar 

  4. Kovács J, Pataki P, Orbán-Mester Á, Nagy G, Staniek P, Földes E, Pukánszky B (2011) Melt stabilisation of Phillips type polyethylene, Part III: correlation of film strength with the rheological characteristics of the polymer. Polym Degrad Stab 96:1771–1779

    Article  Google Scholar 

  5. Mantia FPL, Scaffaro R, Carianni G, Mariani P (2005) Rheological properties of different film blowing polyethylene samples under shear and elongational flow. Macromol Mater Eng 290:159–164

    Article  Google Scholar 

  6. Dealy JM, Larson RG (2006) Structure and rheology of molten polymers. Hanser, Munich

    Book  Google Scholar 

  7. Steffl T (2004) Rheological and film blowing properties of various low density polyethylenes and their blends. Ph.D Thesis, University of Erlangen, Nurnberg

  8. Gabriel C, Munstedt H (2002) Influence of long-chain branches in polyethylenes on linear viscoelastic flow properties in shear. Rheol Acta 41:232–244

    Article  CAS  Google Scholar 

  9. Minoshima W, White JL, Spruiell JE (1980) Experimental investigation of the influence of molecular weight distribution on the rheological properties of polypropylene melts. Polym Eng Sci 20:1166–1176

    Article  CAS  Google Scholar 

  10. Morrison FA (2001) Understanding rheology. Oxford University Press, Chicago

    Google Scholar 

  11. Piel C, Stadler FJ, Kaschta J, Rulhoff S, Mu¨nstedt H, Kaminsky W (2006) Structure–property relationships of linear and long-chain branched metallocene high-density polyethylenes characterized by shear rheology and SEC-MALLS. Macromol Chem Phys 207:26–38

    Article  CAS  Google Scholar 

  12. Wasserman SH, Graessley WW (1992) Effects of polydispersity on linear viscoelasticity in entangled polymer melts. J Rheol 36:543–572

    Article  CAS  Google Scholar 

  13. Meyer T, Keurentjes J (2005) Handbook of polymer reaction engineering. Wiley, New York

    Book  Google Scholar 

  14. Maier D, Eckstein A, Friedrich C, Honerkamp J (1998) Evaluation of models combining rheological data with the molecular weight distribution. J Rheol 42:1153–1173

    Article  CAS  Google Scholar 

  15. Thimm W, Friedrich C, Marth M, Honerkamp J (1999) An analytical relation between relaxation time spectrum and molecular weight distribution. J Rheol 43:1663–1672

    Article  CAS  Google Scholar 

  16. Tuminello WH (1999) Determination molecular weight distribution from the rheological properties of polymer melts. In: Presented at the society of rheology meeting

  17. Thimm W, Friedrich C, Marth M, Honerkamp J (2000) On the Rouse spectrum and the determination of the molecular weight distribution from rheological data. J Rheol 44:429–438

    Article  CAS  Google Scholar 

  18. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New York

    Google Scholar 

  19. Des Cloizeaux J (1988) Double reptation vs simple reptation in polymer melts. Europhys Lett 5:437–442

    Article  CAS  Google Scholar 

  20. Anderssen RS, Mead DW (1998) Theoretical deviation of molecular weight scaling for rheological parameters. J Non-Newton Fluid 76:299–306

    Article  CAS  Google Scholar 

  21. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  22. Samurkas T, Larson RG, Dealy JM (1989) Strong extensional and shearing flows of a branched polyethylene. J Rheol 33:559–578

    Article  CAS  Google Scholar 

  23. Vega JF, Santamaria A, Munoz-Escalona A, Lafuente P (1998) Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes. Macromolecules 31:3639–3647

    Article  CAS  Google Scholar 

  24. Osaki K (1993) On the damping function of shear relaxation modulus for entangled polymers. Rheol Acta 32:429–437

    Article  CAS  Google Scholar 

  25. Osaki K, Watanabe H, Inoue T (1996) Damping function of the shear relaxation modulus and the chain retraction process of entangled polymers. Macromolecules 29:3611–3614

    Article  CAS  Google Scholar 

  26. Hatzikiriakos SG, Migler HB (2005) Polymer processing instabilities control and understanding. CRC Press, New York

    Google Scholar 

  27. Sun T, Brant P, Chance RR, Graessley WW (2001) Effect of short chain branching on the coil dimensions of polyolefins in dilute solution. Macromolecules 34:6812–6820

    Article  CAS  Google Scholar 

  28. Zimm BH, Stockmayer WH (1949) The dimensions of chain molecules containing branches and rings. J Chem Phys 17:1301–1314

    Article  CAS  Google Scholar 

  29. Fan Y, Xue Y, Nie W, Xiangling JI, Bo S (2009) Characterization of the microstructure of bimodal HDPE resin. Polym J 41:622–628

    Article  CAS  Google Scholar 

  30. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. Wiley, New York

    Google Scholar 

  31. Sandler SR, Karo W, Bonesteel J, Pearce EM (1998) Polymer synthesis and characterization. Academic, California

    Google Scholar 

  32. Mark JE (1999) Polymer data handbook. Oxford University Press, New York

    Google Scholar 

  33. Saunders G, MacCreath B (2011) Biodegradable polymers—analysis of engineering polymers by GPC/SEC. Application compendium. Agilent Technologies Inc., Santa Clara

    Google Scholar 

  34. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1. Wiley, New York

    Google Scholar 

  35. Wasserman SH, Graessley WW (1996) Prediction of linear viscoelastic response for entangled polyolefin melts from molecular weight distribution. Polym Eng Sci 36(6):852–861

    Article  Google Scholar 

  36. Osman MA, Atallah A (2006) Effect of the particle size on the viscoelastic properties of filled polyethylene. Polymer 47:2357–2368

    Article  CAS  Google Scholar 

  37. Khan SA, Prudhomme RK, Larson RG (1987) Comparison of the rheology of polymer melts in shear, and biaxial and uniaxial extensions. Rheol Acta 26:144–151

    Article  CAS  Google Scholar 

  38. Yoshikawa K, Toneaki N, Moteki Y, Takahashi M, Masuda T (1991) Dynamic viscoelasticity, stress relaxation and elongational flow behavior of high density polyethylene melts. J Rheol 35:701

    Article  Google Scholar 

  39. Mahendrasingam A, Blundell DJ, Martin C, Fuller W, MacKerron DH, Harvie JL, Oldman RJ, Riekel C (2000) Influence of temperature and chain orientation on the crystallization of poly(ethylene terephthalate) during fast drawing. Polymer 41:7803–7814

    Article  CAS  Google Scholar 

  40. Marrucci G, Grizzuti N (1983) The free energy function of the Doi–Edwards theory: analysis of the instabilities in stress relaxation. J Rheol 27:433–450

    Article  CAS  Google Scholar 

  41. Rolon-Garrido VH, Wagner MH (2009) The damping function in rheology. Rheol Acta 48:245–284

    Article  CAS  Google Scholar 

  42. Hummell DO, Scholl F (1988) Atlas of polymer and plastics analysis. VCH Verlagsgesellschaft, Weinhein

    Google Scholar 

  43. Blitz JP, McFaddin DC (1994) The characterization of short chain branching in polyethylene using Fourier transform infrared spectroscopy. J Appl Polym Sci 51:13–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge R and D Department of Jam Petrochemical Co. for supplying materials and providing a fund for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Azizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirkavand, M.J., Azizi, H., Ghasemi, I. et al. A correlation between microstructure and rheological properties of broad MWD high-density polyethylene. Iran Polym J 24, 953–963 (2015). https://doi.org/10.1007/s13726-015-0383-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0383-7

Keywords

Navigation