Skip to main content
Log in

Preparation of UHMWPE/carbon black nanocomposites by in situ Ziegler–Natta catalyst and investigation of product thermo-mechanical properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A new bi-supported Ziegler–Natta catalyst was prepared successfully by supporting TiCl4 on the carbon black (CB) and magnesium dichloride. Then, this catalyst was used to prepare ultrahigh molecular weight polyethylene (UHMWPE) nanocomposites via in situ polymerization. The effects of difference molar ratios of triisobutylaluminum as activator to TiCl4, polymerization temperature, pressure of monomer and polymerization time on productivity of the catalyst were studied. The maximum activity was obtained at [Al]/[Ti] = 121:1. Increasing monomer pressure raised catalyst activity. Increasing temperature to 60 °C increased the polymerization yield; however, the higher temperature decreased the productivity of the catalyst. Scanning electron microscopic images showed that homogeneous dispersion of CB nanoparticles in the polymeric matrix was achieved without any agglomeration of CB. The crystallization behavior was evaluated using differential scanning calorimeter. The results showed that the crystallinity degree of UHMWPE slightly increased with increasing of CB, indicating that the CB acted as hindrance and nucleating agent. Furthermore, with introducing CB to polymeric matrix up to 1.6 wt%, the melting temperature and crystallization temperatures were slightly increased. The thermogravimetric analysis showed that incorporation of CB has improved thermal stability of polymeric matrix compared to pure UHMWPE. Viscoelastic properties were also investigated using dynamic mechanical thermal analysis. Obtained results showed that with introducing CB, the storage and loss modulus were improved especially at low temperatures and the glass transition temperature was slightly altered. Significant incensement in mechanical properties of the polyethylene was observed by adding nanofiller, in the other words, the presence of CB considerably improved tensile strength, Young’s modulus, and yield stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kurtz S (2004) The UHMWPE handbook: Ultrahigh molecular weight polyethylene in total joint in replacement. Elsevier Academic Press, USA, pp 1–20

    Book  Google Scholar 

  2. Hauptman N, Klanjsˇek Gunde M, Kunaver M, Besˇter-Rogac M (2011) Influence of dispersing additives on the conductivity of carbon black pigment dispersion. J Coat Technol Res 8(5):553–561. doi:10.1007/s11998-011-9330-5

    Article  CAS  Google Scholar 

  3. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204. doi:10.1016/j.polymer.2008.04.017

    Article  CAS  Google Scholar 

  4. Javan Nikkhah S, Ramazani A, Baniasadi H, Tavakolzadeh F (2009) Investigation of properties of polyethylene/clay nanocomposites prepared by new in situ Ziegler–Natta catalyst. Mater Des 30:2309–2315. doi:10.1016/j.matdes.2008.11.019

    Article  Google Scholar 

  5. Meschi Amoli B, Ramazani A, Izadi H (2012) Preparation of ultrahigh-molecular-weight polyethylene/carbon nanotube nanocomposites with a Ziegler–Natta catalytic system and investigation of their thermal and mechanical properties. J Appl Polym Sci 125:453–461. doi:10.1002/app.36368

    Article  Google Scholar 

  6. Ramazani A, Ghahri Saremi M, Meschi Amoli B, Izadi H (2012) Production and characterization of UHMWPE/fumed silica nanocomposites. Polym Compos 23:1858–1864. doi:10.1002/pc.22323

    Article  Google Scholar 

  7. Jamjah R, Zohuri GH, Javaheri M, Nekoomanesh M, Ahmadjo S, Farhadi A (2008) Synthesizing UHMWPE using Ziegler–Natta catalyst system of MgCl2 (ethoxide type)/TiCl4/tri-isobutylaluminum. Macromol Symp 274:148–153. doi:10.1002/masy.200851420

    Article  CAS  Google Scholar 

  8. Chaichana E, Jongsomji B, Praserthdam P (2007) Effect of nano-SiO2 particle size on the formation of LLDPE/SiO2 nanocomposite synthesized via the in situ polymerization with metallocene catalyst. Chem Eng Sci 62:899–905. doi:10.1016/j.ces.2006.10.005

    Article  CAS  Google Scholar 

  9. Halbach T, Mulhaupt R (2008) Boehmite-based polyethylene nanocomposites prepared by in situ polymerization. Polymer 49:867–876. doi:10.1016/j.polymer.2007.12.007

    Article  CAS  Google Scholar 

  10. Baniasadi H, Ramazani A, Javan Nikkhah S (2010) Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method. Mater Des 31:76–84. doi:10.1016/j.matdes.2009.07.014

    Article  CAS  Google Scholar 

  11. Zaragoza-Contreras E, Hernndez-Escobar C, Navarrete-Fontes A, Flores-Gallardo S (2011) Synthesis of carbon black/polystyrene conductive nanocomposite. Pickering emulsion effect characterized by TEM. Micron 42:263–270. doi:10.1016/j.micron.2010.10.005

    Article  CAS  Google Scholar 

  12. Zhou D, Wang Y, Wanga H, Wang SH, Chengb J (2010) Surface-modified nanoscale carbon black used as sorbents for Cu(II) and Cd(II). Hazard Mater 17:34–39. doi:10.1016/j.jhazmat.2009.09.012

    Article  Google Scholar 

  13. Rivera-Utrilla J, Sanchez-Polo M, Gomez-Serrano V, Alvarez PM, Alvim-Ferraz MCM, Dias JM (2011) Activated carbon modifications to enhance its water treatment applications. An overview. J Hazard Mater 187(1–3):1–23. doi:10.1016/j.jhazmat.2011.01.033

    Article  CAS  Google Scholar 

  14. Huang J, Shen F, Li X, Zhou X, Li B, Xu R, Wu Ch (2008) Chemical modification of carbon black by a simple non-liquid-phase approach. J Colloid Interf Sci 328:92–97. doi:10.1016/j.jcis.2008.08.044

    Article  CAS  Google Scholar 

  15. Xin T, Chang L, Hui-Ming CH, Haichao ZH, Feng F, Xuequan ZH (2004) Surface modification of single-walled carbon nanotubes with polyethylene via in situ Ziegler–Natta polymerization. Appl Polym Sci 92:3697–3700. doi:10.1002/app.20306

    Article  Google Scholar 

  16. Zhanxia L, Zhicheng ZH, Yang L, Chunhong W, Youliang H (2006) Synthesis of branched polyethylene by in situ polymerization of ethylene with combined iron catalyst and Ziegler–Natta catalyst. Appl Polym Sc 99:2898–2903. doi:10.1002/app.22851

    Article  Google Scholar 

  17. Ramazani A, Tavakolzadeh F, Baniasadi H (2009) In situ polymerization of polyethylene/clay nanocomposites using a novel clay-supported Ziegler–Natta catalyst. Polym Compos 30:1388–1393. doi:10.1002/pc.20702

    Article  Google Scholar 

  18. Abedi S, Abdouss M, Nekoomanesh-Haghighi M, Sharifi-Sanjani N (2012) PE/clay nanocomposites produced via in situ polymerization by highly active clay-supported Ziegler–Natta catalyst. Polym Bull 70:1313–1325. doi:10.1007/s00289-012-0856-1

    Article  Google Scholar 

  19. Mechael A, Philppe D, Tao S, Juan M, Robert J (2002) Polyethylene-layered silicate nanocomposite prepared by the polymerization—filling technique: synthesis and mechanical properties. Polymer 43:2123–2132. doi:10.1016/S0032-3861(02)00036-8

    Article  Google Scholar 

  20. Abdul Kaleel SH, Kottukkal Bahuleyan B, De SK, Jabarulla Khan M, Sougrat R, Al-Harthi M (2012) Effect of Mn doped-titania on the activity of metallocene catalyst by in situ ethylene polymerization. J Ind Eng Chem 18(5):1836–1840. doi:10.1016/j.jiec.2012.04.010

    Article  CAS  Google Scholar 

  21. Ren CH, Du X, Ma L, Wang Y, Zheng J, Tang T (2010) Preparation of multifunctional supported metallocene catalyst using organic multifunctional modifier for synthesizing polyethylene/clay nanocomposites via in situ intercalative polymerization. Polymer 51:3416–3424. doi:10.1016/j.polymer.2010.05.041

    Article  CAS  Google Scholar 

  22. Kim J, Kwak S, Man Hong S, Rock Lee J, Takahara A, Seo Y (2010) Nonisothermal crystallization behaviors of nanocomposites prepared by in situ polymerization of high-density polyethylene on multi walled carbon nanotubes. Macromolecules 43:10545–10553. doi:10.1021/ma102036h

    Article  CAS  Google Scholar 

  23. Trujillo M, Arnal ML, Muller AJ (2007) thermal and morphological characterization of nanocomposites prepared by in situ polymerization of High-Density Polyethylene on Carbon Nanotubes. Macromolecules 40:6268–6276. doi:10.1021/ma071025m

    Article  CAS  Google Scholar 

  24. Li W, Adams A, Wang J, Blümich B, Yang Y (2010) Polyethylene/palygorskite nanocomposites: preparation by in situ polymerization and their characterization. Polymer 51:4686–4697. doi:10.1016/j.polymer.2010.08.037

    Article  CAS  Google Scholar 

  25. Sánchez Y, Albano C, Karam A, Perera R, Casas E (2009) In situ polymerization of nanocomposites by TpTiCl2 (ET) system: UHMWPE filled with carbon nanotubes. Macromol Symp 282:185–191. doi:10.1002/masy.200950819

    Article  Google Scholar 

  26. Stürzel M, Kempe F, ThomannY Mark S, Enders M, Mülhaupt R (2012) Novel graphene UHMWPE nanocomposites prepared by polymerization filling using single-site catalysts supported on functionalized graphene nanosheet dispersions. Macromolecules 45(17):6878–6887. doi:10.1021/ma301376q

    Article  Google Scholar 

  27. Shafiee M, Ramazani A (2014) Optimization of UHMWPE/graphene nanocomposite processing using Ziegler–Natta catalytic system via response surface methodology. Poly Plast Technol Eng 53:969–974. doi:10.1080/03602559.2014.886067

    Article  CAS  Google Scholar 

  28. Kheradmand A, Ramazani A, Khorasheh F, Baghalha M, Bahrami H (2015) Effects of nano graphene oxide as support on the product properties and performance of Ziegler–Natta catalyst in production of UHMWPE. Polym Adv Technol 26:315–321. doi:10.1002/pat.3453

    Article  CAS  Google Scholar 

  29. Ramazani A, Tavakolzadeh F, Baniasadi H (2010) Synthesis of polypropylene/clay nanocomposites using bisupported Ziegler–Natta catalyst. Polymer Science 115:308–314. doi:10.1002/app.31102

    Google Scholar 

  30. Dashti A, Ramazani A, Hiraoka Y, Yull Kim S, Taniike T, Terano M (2008) Kinetic and morphological study of a magnesium ethoxide-based Ziegler–Natta catalyst for propylene polymerization. Polym Int 58:40–45. doi:10.1002/pi.2490

    Article  Google Scholar 

  31. Rönkkö H, Korpela T, Knuuttila H, Pakkanen T, Denifl P, Leinonen T, Kemell M, Leskelä M (2009) Particle growth and fragmentation of solid self-supported Ziegler–Natta-type catalysts in propylene polymerization. Mol Catal A Chem 309:40–49. doi:10.1016/j.molcata.2009.04.013

    Article  Google Scholar 

  32. Bruck A, Kanaga Karuppiah KS, Sundararajan S, Wang J, Lin ZH (2010) Friction and wear behavior of Ultrahigh Molecular Weight Polyethylene as a function of crystallinity in the presence of the phospholipid dipalmitoyl phosphatidylcholine. Biomed Mater Res B Appl Biomater 93(2):351–358. doi:10.1002/jbm.b.31587

    Article  Google Scholar 

  33. López Manchado M, Valentini L, Biagiotti J, Kenny JM (2005) Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43:1499–1505. doi:10.1016/j.carbon.2005.01.031

    Article  Google Scholar 

  34. Razavi-Nouri M, Ghorbanzadeh-Ahangari M, Fereidoon A, Jahanshahi M (2009) Effect of carbon nanotubes content on crystallization kinetics and morphology of polypropylene. Polym Test 28:46–52. doi:10.1016/j.polymertesting.2008.10.001

    Article  CAS  Google Scholar 

  35. Chrissafis K, Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta 523:1–24. doi:10.1016/J.TCA.2011.06.010

    Article  CAS  Google Scholar 

  36. Chrissafis K, Paraskevopoulos KM, Stavrev SY, Docoslis A, Vassiliou A, Bikiaris DN (2007) Characterization and thermal degradation mechanism of isotactic polypropylene/carbon black nanocomposites. Thermochim Acta 465:6–17. doi:10.1016/j.tca.2007.08.007

    Article  CAS  Google Scholar 

  37. Kudilil Esthappan S, Kumbamala Kuttappan S, Joseph R (2012) Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers. Mater Des 37:537–542. doi:10.1016/j.matdes.2012.01.038

    Article  Google Scholar 

  38. Matsuo M, Bin Y, Xu CH, Ma L, Nakaoki T, Suzuk T (2003) Relaxation mechanism in several kinds of polyethylene estimated by dynamic mechanical measurements, positron annihilation, X-ray and C solid-state NMR. Polymer 44:4325–4340. doi:10.1016/S0032-3861(03)00352-5

    Article  CAS  Google Scholar 

  39. Santos KS, Liberman SA, Oviedo MAS, Mauler RS (2009) Optimization of the mechanical properties of polypropylene-based nanocomposite via the addition of a combination of organoclays. Composites: Part A 40:1199–1209. doi:10.1016/j.compositesa.2009.05.009

  40. Fouad H, Elleithy R, Al-Zahrani SM, Al-haj Ali M (2011) Characterization and processing of High Density Polyethylene/carbon nanocomposites. Mater Des 32:1974–1980. doi:10.1016/j.matdes.2010.11.066

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ahmad Ramazani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadrani, S.A., Ramazani, S.A.A., Khorshidiyeh, S.E. et al. Preparation of UHMWPE/carbon black nanocomposites by in situ Ziegler–Natta catalyst and investigation of product thermo-mechanical properties. Polym. Bull. 73, 1085–1101 (2016). https://doi.org/10.1007/s00289-015-1536-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1536-8

Keywords

Navigation