Skip to main content
Log in

An organic bioactive pro-oxidant behavior in thermal degradation kinetics of polypropylene films

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Due to its versatility and low cost, polypropylene (PP) is one of the most widely used polymers in the world. However, since it does not easily degrade in natural environment, various methods have been studied to reduce its lifetime. The pro-degrading additives promote the polymer degradation process by accelerating the polymer degradation under heat and/or UV. Eco-one is an organic bioactive pro-oxidant additive that induces biodegradation when it is incorporated into a polymeric matrix by attracting microorganisms in the biotic phase. The aim of this work was to investigate the abiotic degradability of this organic bioactive pro-oxidant additive in PP films. Thermal oxidation studies of the specimens were carried out to investigate the abiotic degradability. We analyzed compositions of PP films containing 1, 3, and 5% Eco-one by mass. These films were characterized by thermogravimetric analysis to calculate the activation energy (E α) and to estimate their lifetime. Differential scanning calorimetry was conducted to provide oxidative induction time. The samples were then aged at 80 °C and characterized by Fourier transform infrared spectroscopy to obtain the carbonyl index (CI). Compositions containing 1% Eco-one additive showed the optimal composition with lower activation energy, and shorter predicted lifetime, suggesting easier thermal degradation. Furthermore, high CI was also observed in samples containing 1% additive, indicating thermodegradation for this composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amintowlieh Y, Tzoganakis C, Hatzikiriakos SG, Penlidis A (2014) Effects of processing variables on polypropylene degradation and long chain branching with UV irradiation. Polym Degrad Stab 104:1–10

    Article  CAS  Google Scholar 

  2. Sen SK, Raut S (2015) Microbial degradation of low density polyethylene (LDPE): a review. J Environ Chem Eng 3:462–473

    Article  Google Scholar 

  3. Al-Salem SM, Abraham G, Al-Qabandi OA, Dashti AM (2015) Investigating the effect of accelerated weathering on the mechanical and physical properties of high content plastic solid waste (PSW) blends with virgin linear low density polyethylene (LLDPE). Polym Test 46:116–121

    Article  CAS  Google Scholar 

  4. Liu X, Gao C, Sangwan P, Yu L, Tong Z (2014) Accelerating the degradation of polyolefins through additives and blending. J Appl Polym Sci 131:40750

    Google Scholar 

  5. Rosa DS, Grillo D, Bardi MAG, Calil MR, Guedes CGF, Ramires EC, Frollini E (2009) Mechanical, thermal and morphological characterization of polypropylene/biodegradable polyester blends with additives. Polym Test 28:836–842

    Article  CAS  Google Scholar 

  6. Fontanella S, Bonhomme S, Brusson JM, Pitteri S, Samuel G, Pichon G, Lacoste J, Fromageot D, Lemaire J, Delort AM (2013) Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or Co. Polym Degrad Stab 98:875–884

    Article  CAS  Google Scholar 

  7. Montagna LS, Forte MMC, Santana RMC (2013) Induced degradation of polypropylene with an organic pro-degradant additive. J Mater Sci Eng A 3:123–131

    Google Scholar 

  8. Carvalho CL, Rosa DS (2014) Thermal oxidative degradation of polypropylene containing pro-oxidants. J Therm Anal Calorim 115:1627–1632

    Article  Google Scholar 

  9. Grabmayer K, Beissmann S, Wallner GM, Nitsche D, Schnetzinger K, Buchberger W, Schobermayr H, Lang RW (2015) Characterization of the influence of specimen thickness on the aging behavior of a polypropylene based model compound. Polym Degrad Stab 111:185–193

    Article  CAS  Google Scholar 

  10. Zabihi O, Khodabandeh A (2013) Understanding of thermal/thermo-oxidative degradation kinetics of polythiophene nanoparticles. J Therm Anal Calorim 112:1507–1513

    Article  CAS  Google Scholar 

  11. Murichan N, Cherntongchai P (2014) Kinetic analysis of thermal degradation of polyolefin mixtures. Int J Chem Eng Appl 2:175–196

    Google Scholar 

  12. Huang Z, Ye QQ, Teng LJ (2015) A comparison study on thermal decomposition behavior of poly(L-lactide) with different kinetic models. J Therm Anal Calorim 119:2015–2027

    Article  CAS  Google Scholar 

  13. Zhang S, Zhao H (2014) Study on flavonoid migration from active low-density polyethylene film into aqueous food simulants. Food Chem 157:45–50

    Article  CAS  Google Scholar 

  14. Ammala A, Batemana S, Deana K, Petinakis E, Sangwana P, Wonga S, Yuana Q, Yua L, Patrick C, Leong KH (2011) An overview of degradable and biodegradable polyolefins. Prog Polym Sci 36:1015–1049

    Article  CAS  Google Scholar 

  15. Flynn JH, Wall LA (1966) A quick method for the determination of activation energy from thermogravimetric data. Polym Lett 4:323–328

    Article  CAS  Google Scholar 

  16. Ozawa TA (1965) New method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  17. American Society for Testing and Materials (2015) Standard test method for decomposition kinetics by thermogravimetry, ASTM E1641-15. ASTM International, West Conshohocken

    Google Scholar 

  18. Vasconcelos GC, Mazur RL, Ribeiro B, Botelho EC, Costa ML (2014) Evaluation of decomposition kinetics of poly(ether-ether-ketone) by thermogravimetric analysis. Mater Res 17:227–235

    Article  CAS  Google Scholar 

  19. American Society for Testing and Materials (2015) Standard practice for calculating thermal endurance of materials from thermogravimetric decomposition data, ASTM E1877-15. ASTM International, West Conshohocken

    Google Scholar 

  20. Barbes L, Radulescu C, Stihi C (2014) ATR-FTIR spectrometry characterization of polymeric materials. Rom Rep Phys 66:765–777

    Google Scholar 

  21. Borysiak S (2015) The thermo-oxidative stability and flammability of wood/polypropylene composites. J Therm Anal Calorim 119:1955–1962

    Article  CAS  Google Scholar 

  22. Volponi JE, Mei LHI, Rosa DS (2004) The use of differential photocalorimetry to measure the oxidation induction time of isotatic polypropylene. Polym Test 23:461–465

    Article  CAS  Google Scholar 

  23. Ramos M, Jiménez A, Peltzer M, Garrigós MC (2012) Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J Food Eng 109:13–19

    Article  Google Scholar 

  24. Lecouvet B, Bourbigot S, Sclavons M, Bailly C (2012) Kinetics of the thermal and thermo-oxidative degradation of polypropylene/halloysite nanocomposites. Polym Degrad Stab 97:1745–1754

    Article  CAS  Google Scholar 

  25. Parparita E, Nistor MT, Popescu MC, Vasile C (2014) TG/FT-IR/MS study on thermal decomposition of polypropylene/biomass composites. Polym Degrad Stab 109:13–20

    Article  CAS  Google Scholar 

  26. Rychly J, Matisova-Rychla L, Csomorova K, Janigova I, Schilling M, Learner T (2011) Non-isothermal thermogravimetry, differential scanning calorimetry and chemiluminescence in degradation of polyethylene, polypropylene, polystyrene and poly(methyl methacrylate). Polym Degrad Stab 96:1573–1581

    Article  CAS  Google Scholar 

  27. Roy PK, Surekha P, Rajagopal C, Choudhary V (2007) Thermal degradation studies of LDPE containing cobalt stearate as pro-oxidant. Express Polym Lett 4:208–216

    Article  Google Scholar 

  28. Paiva GMS, Freitas AR, Nobre FX, Leite CMS, Matos JME, Rios MAS (2015) Kinetic and thermal stability study of hydrogenated cardanol and alkylated hydrogenated cardanol. J Therm Anal Calorim 120:1617–1625

    Article  CAS  Google Scholar 

  29. Stuart BH (2002) Infrared spectroscopy: fundamentals and applications. Wiley, New York

    Google Scholar 

  30. Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds. Wiley, New York

    Google Scholar 

  31. François-Heude A, Richaud E, Desnoux E, Colin X (2015) A general kinetic model for the photothermal oxidation of polypropylene. J Photochem Photobiol A Chem 296:48–65

    Article  Google Scholar 

  32. Gijsmana P, Gitton-Chevalier M (2003) Aliphatic amines for use as long-term heat stabilizers for polypropylene. Polym Degrad Stab 81:483–489

    Article  Google Scholar 

  33. Mowery DM, Assink RA, Derzon DK, Klamo SB, Clough RL, Bernstein R (2005) Solid-state 13C NMR investigation of the oxidative degradation of selectively labeled polypropylene by thermal aging and γ-irradiation. Macromolecules 38:5035–5046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to UFABC, FAPESP, and CNPq for grants and to CAPES for fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara B. Tavares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavares, L.B., Rocha, R.G. & Rosa, D.S. An organic bioactive pro-oxidant behavior in thermal degradation kinetics of polypropylene films. Iran Polym J 26, 273–280 (2017). https://doi.org/10.1007/s13726-017-0517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0517-1

Keywords

Navigation