Skip to main content
Log in

Statistical analysis of experimental parameters in characterization of ultraviolet-resistant polyester fiber using a TOPSIS-Taguchi method

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Cells may be damaged under long-term exposure to ultraviolet (UV) rays; hence, titanium dioxide has been used to produce polyester (PET)/titanium dioxide (TiO2) UV-resistant fibers using the melt-spinning method. This study employed the Taguchi method and the technique for order preference by similarity to the ideal solution (TOPSIS) to plan the melt-spinning process parameters in to save experimental costs and time. Both the Taguchi method and TOPSIS could effectively obtain the mechanical characterization of PET/TiO2 UV-resistant fiber and replace the original 19,683 groups of experiments with 27 groups. The analysis of variance and response surface methodology found that the key factors for the quality attributes of PET/TiO2 UV-resistant fiber are the die temperature and the winding speed. By controlling these factors, the mechanical characterization of PET/TiO2 UV-resistant fiber could be effectively enhanced. The optimal conditions and quality characteristics obtained by the proposed method are in the 95 % confidence interval, proving the reliability of this study. The PET/TiO2 UV-resistant fiber, obtained under the best conditions, could effectively absorb both UVA and UVB radiations, and thus be applied in sports leisure clothing, umbrellas, work uniforms, hats, tents, curtains and other products. The results also proved that the method could save experimental costs and time, which meets the world trends of energy saving and carbon reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Paul CL, Stacey F, Girgis A, Brozek I, Baird H, Hughes J (2005) Solaria compliance in an unregulated environment: the Australian experience. Eur J Cancer 41:1178–1184

    Article  CAS  Google Scholar 

  2. Saraiya M, Glanz K, Briss PA, Nichols P, White C, Das D, Smith SJ, Tannor B, Hutchinson AB, Wilson KM, Gandhi N, Lee NC, Rimer B, Coates RC, Kerner JF, Hiatt RA, Buffler P, Rochester P (2004) Interventions to prevent skin cancer by reducing exposure to ultraviolet radiation: a systematic review. Am J Prev Med 27:482–483

    Google Scholar 

  3. Keybus CVD, Laperre J, Roelandts R (2006) Protection from visible light by commonly used textiles is not predicted by ultraviolet protection. J Am Acad Dermatol 54:86–93

    Article  Google Scholar 

  4. Tavanai H, Taheri SM, Nasiri M (2005) Modelling of colour yield in polyethylene terephthalate dyeing with statistical and fuzzy regression. Iran Polym J 14:954–967

    CAS  Google Scholar 

  5. Afshari M (2005) Crystalline and amorphous orientation of polypropylene/nylon 6 blend filaments. Iran Polym J 14:1042–1049

    CAS  Google Scholar 

  6. Haghighat Kish M, Shoushtari SA, Kazemi S (2000) Effects of cold-drawing and heat-setting on the structure and properties of medium speed spun polypropylene filaments. Iran Polym J 9:239–248

    Google Scholar 

  7. Khanli HH, Mohammadi N, Amiri D, Torabi-Angagi M (2001) Molecular characterization of some polyethylenes synthesized by Iranian petrochemical industries. Iran Polym J 10:217–222

    CAS  Google Scholar 

  8. Zhang J, Gao J, Sun X, Peng Z, Diao J (2007) Preparation and characterization of TiO2/poly(St-co-MAA) core/shell composite particles. Iran Polym J 16:39–46

    Google Scholar 

  9. Dhadwal R (2011) Numerical simulation of a two-phase meltspinning model. Appl Math Model 35:2959–2971

    Article  Google Scholar 

  10. Saito T (2010) Electrical resistivity and magnetic properties of Nd-Fe-B alloys produced by melt-spinning technique. J Alloy Compd 505:23–28

    Article  CAS  Google Scholar 

  11. Zhou C, Kumar S (2010) Thermal instabilities in melt spinning of viscoelastic fibers. J Nonnewton Fluid Mech 165:879–891

    Article  CAS  Google Scholar 

  12. Hong GB, Su TL (2012) Study on an optimal design of mechanical properties for PP/PET nonwovens. Fibres Text East Eur 20:75–79

    Google Scholar 

  13. Rezaei M, Golshan Ebrahimi N, Shirzad A (2006) Study on mechanical properties of UHMWPE/PET composites using robust design. Iran Polym J 15:3–12

    CAS  Google Scholar 

  14. Bozorg Haddad M, Golshan Ebrahimi N (2006) Effect of radiation on the properties of UHMWPE/PET composite. Iran Polym J 15:195–205

    Google Scholar 

  15. Hashemi-Najafabadi S, Vasheghani-Farahani E, Shojaosadati SA, Rasaee MJ, Moin M, Pourpak Z (2006) Factorial design optimization of red blood cell PEGylation with a low molecular weight polymer. Iran Polym J 15:675–683

    CAS  Google Scholar 

  16. Yang T, Wen YF, Wang FF (2011) Evaluation of robustness of supply chain information-sharing strategies using a hybrid Taguchi and multiple criteria decision-making method. Int J Prod Econ 134:458–466

    Article  Google Scholar 

  17. Sivapirakasam SP, Mathew J, Surianarayanan M (2011) Multi-attribute decision making for green electrical discharge machining. Expert Syst Appl 38:8370–8374

    Article  Google Scholar 

  18. Kuo Y, Yang T, Cho C, Tseng YC (2008) Using simulation and multi-criteria methods to provide robust solutions to dispatching problems in a flow shop with multiple processors. Math Comput Simul 78:40–56

    Article  Google Scholar 

  19. Tong KW, Kwong CK, Ip KW (2003) Optimization of process conditions for the transfer molding of electronic packages. J Mater Process Tech 138:361–365

    Article  Google Scholar 

  20. Adamczyk J, Horny N, Tricoteaux A, Jouan PY, Zadam M (2008) On the use of response surface methodology to predict and interpret the preferred c-axis orientation of sputtered AlN thin films. Appl Surf Sci 254:1744–1750

    Article  CAS  Google Scholar 

  21. Su TL, Kuo YL, Wu TJ, Kung FC (2012) Experimental analysis and optimization of the synthesizing property of nitrogen-modified TiO2 visible-light photocatalysts. J Chem Technol Biotechnol 87:160–164

    Article  CAS  Google Scholar 

  22. Su TL, Lai CC, Tsai PC (2011) Interactions and solubilization of disperse dye with modified gemini surfactants: investigation using the Taguchi method. J Surfactant Deterg 14:363–369

    Article  CAS  Google Scholar 

  23. Su TL, Chiou CS, Chen HW (2012) Preparation, photocatalytic activity and recovery of magnetic photocatalyst for decomposition of benzoic acid. Int J Photoenergy 2012:1–8

    Article  Google Scholar 

  24. Mavruz S, Ogulata RT (2010) Taguchi approach for the optimisation of the bursting strength of knitted fabrics. Fibres Text East Eur 18:78–83

    Google Scholar 

  25. Su TL, Chen HW, Lu CF (2010) Systematic optimization for the evaluation of the micro injection molding parameters of light guide plate with TOPSIS-based Taguchi method. Adv Polym Technol 29:54–63

    Article  CAS  Google Scholar 

  26. Naficy S, Garmabi H (2007) Study of the effective parameters on mechanical and electrical properties of carbon black filled PP/PA6 microfibrillar composites. Compos Sci Technol 67:3233–3241

    Article  CAS  Google Scholar 

  27. Cho DH, Jeong Y (2006) Analysis of spinning process parameters on development of spun-dyed PET yarn using the Taguchi method. J Appl Polym Sci 102:1419–1427

    Article  CAS  Google Scholar 

  28. Sulong AB, Park J, Azhari CH, Jusoff K (2011) Process optimization of melt spinning and mechanical strength enhancement of functionalized multi-walled carbon nanotubes reinforcing polyethylene fibers. Compos Part B Eng 42:11–17

    Article  Google Scholar 

  29. Ellä V, Rajala A, Tukiainen M, Kellomäki M (2012) Using the Taguchi method to obtain more finesse to the biodegradable fibers. Methods Mol Biol 868:143–154

    Article  Google Scholar 

  30. Ottone ML, Deiber JA (2000) Modeling the melt spinning of polyethylene terephthalate. J Elastom Plast 32:119–139

    Article  CAS  Google Scholar 

  31. Han K, Yu M (2006) Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation. J Appl Polym 100:1588–1593

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by the National Science Council of the Republic of China under contract No. NSC 101-2221-E-562-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te-Li Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, GB., Su, TL. Statistical analysis of experimental parameters in characterization of ultraviolet-resistant polyester fiber using a TOPSIS-Taguchi method. Iran Polym J 21, 877–885 (2012). https://doi.org/10.1007/s13726-012-0093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-012-0093-3

Keywords

Navigation