Skip to main content

Using the Taguchi Method to Obtain More Finesse to the Biodegradable Fibers

  • Protocol
  • First Online:
Computer-Aided Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 868))

Abstract

The Taguchi method together with Minitab software was used to optimize the melt spun PLLA multifilament fiber finesse. The aim was to minimize the number of spinning experiments to find optimal processing conditions and to maximize the quality of the fibers (thickness, strength, and smoothness). The optimization was performed in two parts. At first, the melt spinning process was optimized considering the drawing that followed and at second step the drawing was optimized. Fine (15 μm) fibers with feasible strength properties (730 MPa) for further processing were produced with the aid of Minitab software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chu CC (2001) Textile-based biomaterials for surgical applications. In: Severian D (ed) Polymeric biomaterials, 2nd edn. Marcel Dekker, New York, USA, pp 491–544

    Google Scholar 

  2. Patrick CW Jr, Mikos AG, McIntyre LV (eds) (1998) Frontiers in tissue engineering. Pergamon, Oxford, UK

    Google Scholar 

  3. Nerem RM, Sambanis A (1995) Tissue engineering: from biology to biological substitutes. Tissue Eng 1:3–13

    Article  CAS  Google Scholar 

  4. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R (1994) Preparation and characterization of poly (l-lactic acid) foams. Polymer 35(5):1068–1077

    Article  CAS  Google Scholar 

  5. Thomson RC, Wake MC, Yaszemski M, Mikos AG (1995) Biodegradable polymer scaffolds to regenerate organs. Adv Polym Sci 122:247–274

    Google Scholar 

  6. Park A, Wu B, Griffith LG (1998) Integration of surface modification and 3D fabrication techniques to prepare patterned poly(l-lactide) substrates allowing regionally selective cell adhesion. J Biomater Sci Polym Edn 9(2):89–110

    Article  CAS  Google Scholar 

  7. Landers R, Hübner U, Schmelzeisen R, Mülhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23(23):4437–4447

    Article  CAS  Google Scholar 

  8. Hile DD, Amirpour ML, Akgerman A, Pishko MV (2000) Active growth factor delivery from poly(d, l-lactide-co-glycolide) foams prepared in supercritical CO2. J Control Release 66:177–185

    Article  CAS  Google Scholar 

  9. Honkanen PB, Kellomäki M, Lehtimäki MY, Törmälä P, Mäkelä OT, Lehto MUK (2003) Bioreconstructive joint scaffold implant arthroplasty in metacarpophlangeal joints: short-term results of a new treatment in rheumatoid arthritis patients. Tissue Eng 9(5):957–965

    Article  CAS  Google Scholar 

  10. Laukkarinen J, Sand J, Chow P, Juuti H, Kellomäki M, Kärkkäinen P, Isola J, Yu S, Somanesan S, Kee I, Song IC, Teck HN, Nordback I (2007) A novel biodegradable biliary stent in the normal duct hepaticojejunal anastomosis: an 18-month follow-up in a large animal model. J Gastrointest Surg 11:750–757

    Article  Google Scholar 

  11. Gundy S, Manning G, O’Connel E, Ellä V, Sri Harwoko M, Rochev Y, Smith T, Barron V (2008) Human coronary artery smooth muscle cell response to a novel PLA textile/fibrin gel composite scaffold. Acta Biomater 4:1734–1744

    Article  CAS  Google Scholar 

  12. Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA (1997) Trasplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 100:297–302

    Article  CAS  Google Scholar 

  13. Fourné F (ed) (1999) Synthetic fibers. Hanser Publishers, Munich, Germany

    Google Scholar 

  14. Wake NC, Patrick CW, Mikos AG (1994) Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transpl 3:339–343

    CAS  Google Scholar 

  15. Nehrer S, Breinan HA, Ramappa A, Young G, Shortkroff S, Louie LK, Sledge CB, Yannas IV, Spector M (1997) Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials 18:769–776

    Article  CAS  Google Scholar 

  16. Grande DA, Halberstad C, Naughton G, Schwartz R, Manji R (1997) Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res 34:211–220

    Article  CAS  Google Scholar 

  17. Pulliainen O, Vasara AI, Hyttinen MM, Tiitu V, Valonen P, Kellomäki M, Jurvelin JS, Peterson L, Lindahl A, Kiviranta I, Lammi MJ (2007) Poly-l-d-lactic acid scaffold in the repair of porcine knee cartilage lesions. Tissue Eng 13(6):1347–1355

    Article  CAS  Google Scholar 

  18. Taguchi G, Chowdhury S, Wu Y (eds) (2004) Taguchi’s quality engineering handbook. JohnWiley and Sons, New Jersey, USA

    Google Scholar 

  19. Huang CC, Tang TT (2006) Parameter optimization in melt spinning by neural networks and genetic algorithms. Int J Adv Manuf Techol 27:1113–1118

    Article  Google Scholar 

  20. Huang CC, Tang TT (2006) Optimizing multiple qualities in as-spun polypropylene yarn by neural networks and genetic algorithms. J Appl Polym Sci 100(3):2532–2541

    Article  CAS  Google Scholar 

  21. Wang MW, Jeng JH (2009) Optimal molding parameter design of PLA micro lancet needles using the Taguchi method. Polym Plast Technol 48(7):730–735

    Article  CAS  Google Scholar 

  22. Patra SN, Easteal AJ, Bhattacharyya D (2009) Parametric study of manufacturing poly(lactic) acid nanofibrous mat by electrospinning. J Mater Sci 44(2):647–654

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville Ellä .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ellä, V., Rajala, A., Tukiainen, M., Kellomäki, M. (2012). Using the Taguchi Method to Obtain More Finesse to the Biodegradable Fibers. In: Liebschner, M. (eds) Computer-Aided Tissue Engineering. Methods in Molecular Biology, vol 868. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-764-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-764-4_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-763-7

  • Online ISBN: 978-1-61779-764-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics