Skip to main content

Advertisement

Log in

Classic and Novel Adipocytokines at the Intersection of Obesity and Cancer: Diagnostic and Therapeutic Strategies

  • Metabolism (M Dalamaga, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we investigate the role of classic and novel adipocytokines in cancer pathogenesis synopsizing the mechanisms underlying the association between adipocytokines and malignancy. Special emphasis is given on novel adipocytokines as new evidence is emerging regarding their entanglement in neoplastic development.

Recent Findings

Recent data have emphasized the role of the triad of overweight/obesity, insulin resistance and adipocytokines in cancer. In the setting of obesity, classic and novel adipocytokines present independent and joint effects on activation of major intracellular signaling pathways implicated in cell proliferation, expansion, survival, adhesion, invasion, and metastasis. Until now, more than 15 adipocytokines have been associated with cancer, and this list continues to expand. While the plethora of circulating pro-inflammatory adipocytokines, such as leptin, resistin, extracellular nicotinamide phosphoribosyl transferase, and chemerin are elevated in malignancies, some adipocytokines such as adiponectin and omentin-1 are generally decreased in cancers and are considered protective against carcinogenesis.

Summary

Elucidating the intertwining of inflammation, cellular bioenergetics, and adiposopathy is significant for the development of preventive, diagnostic, and therapeutic strategies against cancer. Novel more effective and safe adipocytokine-centered therapeutic interventions may pave the way for targeted oncotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AdipoR1/R2:

Adiponectin receptor 1/2

Akt:

v-Akt murine thymoma viral oncogene homolog

AMPK:

5’ AMP-activated protein kinase

BC:

Breast cancer

BMI:

Body mass index

CVD:

Cardiovascular disease

DM:

Diabetes mellitus

DNA:

Deoxyribonucleic acid

ER:

Estrogen receptor

ERK 1/2:

Extracellular signal-regulated kinase 1/2

GRP78:

Glucose-regulated protein 78

GTP:

Guanosine-5′-triphosphate

HIF-1a:

Hypoxia-inducible factor-1a

IL:

Interleukin

IGF:

Insulin-like growth factor

IRS:

Insulin receptor substrate

JAK:

Janus kinase

JNK:

Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

LEPR:

Leptin receptor

LIFRα:

Leukemia inhibitory receptor alpha

MMP:

Matrix metalloproteinase

mTOR:

Mammalian target of rapamycin

NAD:

Nicotinamide adenine dinucleotide

Nampt:

Nicotinamide phosphoribosyl transferase

NF-κB:

Nuclear factor-κB

NSCLC:

Non-small cell lung carcinoma

OSM:

Oncostatin M

PBEF:

Pre-B cell colony-enhancing factor

PCOS:

Polycystic ovary syndrome

PI3K:

Phosphatidylinositol 3-kinase

PPAR:

Peroxisome proliferator-activated receptors

PR:

Progesterone receptor

RBP-4:

Retinol-binding protein

ROCK:

Rho-associated coiled coil-containing protein kinase

SNPs:

Single nucleotide polymorphisms

STAT:

Signal transducer and activator of transcription

STRA6:

Stimulated by retinoic acid 6

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-α

VCAM-1:

Vascular cellular adhesion molecule-1

VEGF:

Vascular endothelial growth factor

WHR:

Waist-to-hip ratio

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jemal A, Miller KD, Ma J, Siegel RL, Fedewa SA, Islami F, et al. Higher lung cancer incidence in young women than young men in the United States. N Engl J Med. 2018;378:1999–2009. https://doi.org/10.1056/NEJMoa1715907.

    Article  PubMed  Google Scholar 

  2. Pischon T, Nimptsch K. Obesity and risk of cancer: an introductory overview. Recent Results Cancer Res. 2016;208:1–15. https://doi.org/10.1007/978-3-319-42542-9_1.

    Article  CAS  PubMed  Google Scholar 

  3. Kelly T, Yang W, Chen C-S, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32:1431–7. https://doi.org/10.1038/ijo.2008.102.

    Article  CAS  Google Scholar 

  4. Ackerman SE, Blackburn OA, Marchildon F, Cohen P. Insights into the link between obesity and cancer. Curr Obes Rep. 2017;6:195–203. https://doi.org/10.1007/s13679-017-0263-x.

    Article  PubMed  Google Scholar 

  5. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K, et al. Body fatness and cancer—viewpoint of the IARC Working Group. N Engl J Med. 2016;375:794–8. https://doi.org/10.1056/NEJMsr1606602.

    Article  PubMed  Google Scholar 

  6. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–38. https://doi.org/10.1056/NEJMoa021423.

    Article  PubMed  Google Scholar 

  7. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–78. https://doi.org/10.1016/S0140-6736(08)60269-X.

    Article  Google Scholar 

  8. Britton KA, Massaro JM, Murabito JM, Kreger BE, Hoffmann U, Fox CS. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J Am Coll Cardiol. 2013;62:921–5. https://doi.org/10.1016/j.jacc.2013.06.027.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lichtman MA. Obesity and neoplasms of lymphohematopoietic cells. Blood Adv. 2016;1:101–3. https://doi.org/10.1182/bloodadvances.2016001685.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wallin A, Larsson SC. Body mass index and risk of multiple myeloma: a meta-analysis of prospective studies. Eur J Cancer. 2011;47:1606–15. https://doi.org/10.1016/j.ejca.2011.01.020.

    Article  PubMed  Google Scholar 

  11. Dalamaga M, Christodoulatos GS. Adiponectin as a biomarker linking obesity and adiposopathy to hematologic malignancies. Horm Mol Biol Clin Investig. 2015;23:5–20. https://doi.org/10.1515/hmbci-2015-0016.

    Article  CAS  PubMed  Google Scholar 

  12. Larsson SC, Wolk A. Overweight and obesity and incidence of leukemia: a meta-analysis of cohort studies. Int J Cancer. 2008;122:1418–21. https://doi.org/10.1002/ijc.23176.

    Article  CAS  PubMed  Google Scholar 

  13. Larsson SC, Wolk A. Obesity and risk of non-Hodgkin’s lymphoma: a meta-analysis. Int J Cancer. 2007;121:1564–70. https://doi.org/10.1002/ijc.22762.

    Article  CAS  PubMed  Google Scholar 

  14. Park Y, Colditz GA. Diabetes and adiposity: a heavy load for cancer. Lancet Diabetes Endocrinol. 2018;6:82–3. https://doi.org/10.1016/S2213-8587(17)30396-0.

    Article  PubMed  Google Scholar 

  15. van Kruijsdijk RCM, van der Wall E, Visseren FLJ. Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomark Prev. 2009;18:2569–78. https://doi.org/10.1158/1055-9965.EPI-09-0372.

    Article  CAS  Google Scholar 

  16. •• Dalamaga M, Christodoulatos GS, Mantzoros CS. The role of extracellular and intracellular nicotinamide phosphoribosyl-transferase in cancer: diagnostic and therapeutic perspectives and challenges. Metabolism. 2018;82:72–87. https://doi.org/10.1016/j.metabol.2018.01.001. This review explores the role of Nampt in cancer pathophysiology as well as synopsizes the mechanisms underlying the association between extracellular and intracellular Nampt and malignancy.

    Article  CAS  PubMed  Google Scholar 

  17. •• Dalamaga M, Diakopoulos KN, Mantzoros CS. The role of adiponectin in cancer: a review of current evidence. Endocr Rev. 2012;33:547–94. https://doi.org/10.1210/er.2011-1015. This review investigates the role of adiponectin in cancer pathophysiology as well as synopsizes the mechanisms underlying the association between adiponectin and cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dalamaga M. Obesity, insulin resistance, adipocytokines and breast cancer: new biomarkers and attractive therapeutic targets. World J Exp Med. 2013;3:34–42. https://doi.org/10.5493/wjem.v3.i3.34.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pickens CA, Sordillo LM, Zhang C, Fenton JI. Obesity is positively associated with arachidonic acid-derived 5- and 11-hydroxyeicosatetraenoic acid (HETE). Metabolism. 2017;70:177–91. https://doi.org/10.1016/j.metabol.2017.01.034.

    Article  CAS  PubMed  Google Scholar 

  20. Lee MK, Kim J-Y, Kim D-I, Kang D-W, Park J, Ahn K-Y, et al. Effect of home-based exercise intervention on fasting insulin and adipocytokines in colorectal cancer survivors: a randomized controlled trial. Metabolism. 2017;76:23–31. https://doi.org/10.1016/j.metabol.2017.07.005.

    Article  CAS  PubMed  Google Scholar 

  21. Mendonça FM, de Sousa FR, Barbosa AL, Martins SC, Araújo RL, Soares R, et al. Metabolic syndrome and risk of cancer: which link? Metabolism. 2015;64:182–9. https://doi.org/10.1016/j.metabol.2014.10.008.

    Article  CAS  PubMed  Google Scholar 

  22. Cabia B, Andrade S, Carreira MC, Casanueva FF, Crujeiras AB. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis. Obes Rev. 2016;17:361–76. https://doi.org/10.1111/obr.12377.

    Article  CAS  PubMed  Google Scholar 

  23. Sahin-Efe A, Katsikeris F, Mantzoros CS. Advances in adipokines. Metabolism. 2012;61:1659–65. https://doi.org/10.1016/j.metabol.2012.09.001.

    Article  CAS  PubMed  Google Scholar 

  24. Reizes O, Berger NA. Adipocytokines, energy balance, and cancer. Springer International Publishing Switzerland; 2017. https://doi.org/10.1007/978-3-319-41677-9

    Google Scholar 

  25. Dalamaga M. Resistin as a biomarker linking obesity and inflammation to cancer: potential clinical perspectives. Biomark Med. 2014;8:107–18. https://doi.org/10.2217/bmm.13.99.

    Article  CAS  PubMed  Google Scholar 

  26. Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab. 2013;18:29–42. https://doi.org/10.1016/j.cmet.2013.05.010.

    Article  CAS  Google Scholar 

  27. Moon H-S, Dalamaga M, Kim S-Y, Polyzos SA, Hamnvik O-P, Magkos F, et al. Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr Rev. 2013;34:377–412. https://doi.org/10.1210/er.2012-1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee CH, Woo YC, Wang Y, Yeung CY, Xu A, Lam KSL. Obesity, adipokines and cancer: an update. Clin Endocrinol. 2015;83:147–56. https://doi.org/10.1111/cen.12667.

    Article  CAS  Google Scholar 

  29. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26:439–51. https://doi.org/10.1210/er.2005-0005.

    Article  CAS  PubMed  Google Scholar 

  30. Brochu-Gaudreau K, Rehfeldt C, Blouin R, Bordignon V, Murphy BD, Palin M-F. Adiponectin action from head to toe. Endocrine. 2010;37:11–32. https://doi.org/10.1007/s12020-009-9278-8.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Lam KSL, Xu JY, Lu G, Xu LY, Cooper GJS, et al. Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem. 2005;280:18341–7. https://doi.org/10.1074/jbc.M501149200.

    Article  CAS  PubMed  Google Scholar 

  32. Ziemke F, Mantzoros CS. Adiponectin in insulin resistance: lessons from translational research. Am J Clin Nutr. 2010;91:258S–61S. https://doi.org/10.3945/ajcn.2009.28449C.

    Article  CAS  PubMed  Google Scholar 

  33. Barb D, Williams CJ, Neuwirth AK, Mantzoros CS. Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence. Am J Clin Nutr. 2007;86:s858–66. https://doi.org/10.1093/ajcn/86.3.858S.

    Article  PubMed  Google Scholar 

  34. Kelesidis I, Kelesidis T, Mantzoros CS. Adiponectin and cancer: a systematic review. Br J Cancer. 2006;94:1221–5. https://doi.org/10.1038/sj.bjc.6603051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hivert M-F, Sullivan LM, Fox CS, Nathan DM, D’Agostino RB, Wilson PWF, et al. Associations of adiponectin, resistin, and tumor necrosis factor-alpha with insulin resistance. J Clin Endocrinol Metab. 2008;93:3165–72. https://doi.org/10.1210/jc.2008-0425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86:1930–5. https://doi.org/10.1210/jcem.86.5.7463.

    Article  CAS  PubMed  Google Scholar 

  37. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20:1595–9.

    Article  CAS  Google Scholar 

  38. Heidemann C, Sun Q, van Dam RM, Meigs JB, Zhang C, Tworoger SS, et al. Total and high-molecular-weight adiponectin and resistin in relation to the risk for type 2 diabetes in women. Ann Intern Med. 2008;149:307–16.

    Article  Google Scholar 

  39. Mazaki-Tovi S, Romero R, Vaisbuch E, Erez O, Mittal P, Chaiworapongsa T, et al. Maternal serum adiponectin multimers in gestational diabetes. J Perinat Med. 2009;37:637–50. https://doi.org/10.1515/JPM.2009.101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trujillo ME, Scherer PE. Adiponectin—journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med. 2005;257:167–75. https://doi.org/10.1111/j.1365-2796.2004.01426.x.

    Article  CAS  PubMed  Google Scholar 

  41. Durante-Mangoni E, Zampino R, Marrone A, Tripodi M-F, Rinaldi L, Restivo L, et al. Hepatic steatosis and insulin resistance are associated with serum imbalance of adiponectin/tumour necrosis factor-alpha in chronic hepatitis C patients. Aliment Pharmacol Ther. 2006;24:1349–57. https://doi.org/10.1111/j.1365-2036.2006.03114.x.

    Article  CAS  PubMed  Google Scholar 

  42. Lee DY, Rhee E-J, Chang Y, Sohn CIL, Shin H-C, Ryu S, et al. Impact of systemic inflammation on the relationship between insulin resistance and all-cause and cancer-related mortality. Metabolism. 2018;81:52–62. https://doi.org/10.1016/j.metabol.2017.11.014.

    Article  CAS  PubMed  Google Scholar 

  43. Delporte ML, Brichard SM, Hermans MP, Beguin C, Lambert M. Hyperadiponectinaemia in anorexia nervosa. Clin Endocrinol. 2003;58:22–9.

    Article  CAS  Google Scholar 

  44. Ebina K, Fukuhara A, Ando W, Hirao M, Koga T, Oshima K, et al. Serum adiponectin concentrations correlate with severity of rheumatoid arthritis evaluated by extent of joint destruction. Clin Rheumatol. 2009;28:445–51. https://doi.org/10.1007/s10067-008-1074-y.

    Article  PubMed  Google Scholar 

  45. Senolt L, Pavelka K, Housa D, Haluzík M. Increased adiponectin is negatively linked to the local inflammatory process in patients with rheumatoid arthritis. Cytokine. 2006;35:247–52. https://doi.org/10.1016/j.cyto.2006.09.002.

    Article  CAS  PubMed  Google Scholar 

  46. Zoccali C, Mallamaci F. Adiponectin and leptin in chronic kidney disease: causal factors or mere risk markers? J Ren Nutr. 2011;21:87–91. https://doi.org/10.1053/j.jrn.2010.10.014.

    Article  CAS  PubMed  Google Scholar 

  47. Schulze MB, Shai I, Rimm EB, Li T, Rifai N, Hu FB. Adiponectin and future coronary heart disease events among men with type 2 diabetes. Diabetes. 2005;54:534–9.

    Article  CAS  Google Scholar 

  48. Mantzoros CS, Li T, Manson JE, Meigs JB, Hu FB. Circulating adiponectin levels are associated with better glycemic control, more favorable lipid profile, and reduced inflammation in women with type 2 diabetes. J Clin Endocrinol Metab. 2005;90:4542–8. https://doi.org/10.1210/jc.2005-0372.

    Article  CAS  PubMed  Google Scholar 

  49. Gorgui J, Gasbarrino K, Georgakis MK, Karalexi MA, Nauche B, Petridou ET, et al. Circulating adiponectin levels in relation to carotid atherosclerotic plaque presence, ischemic stroke risk, and mortality: a systematic review and meta-analyses. Metabolism. 2017;69:51–66. https://doi.org/10.1016/j.metabol.2017.01.002.

    Article  CAS  PubMed  Google Scholar 

  50. Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2009;302:179–88. https://doi.org/10.1001/jama.2009.976.

    Article  CAS  PubMed  Google Scholar 

  51. • Boutari C, Mantzoros CS. Inflammation: a key player linking obesity with malignancies. Metabolism. 2018;81:A3–6. https://doi.org/10.1016/j.metabol.2017.12.015. This study reviews the relationship of obesity and cancer under the common theme of inflammation.

    Article  CAS  PubMed  Google Scholar 

  52. Diedrich J, Gusky HC, Podgorski I. Adipose tissue dysfunction and its effects on tumor metabolism. Horm Mol Biol Clin Investig. 2015;21:17–41. https://doi.org/10.1515/hmbci-2014-0045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pérez-Hernández AI, Catalán V, Gómez-Ambrosi J, Rodríguez A, Frühbeck G. Mechanisms linking excess adiposity and carcinogenesis promotion. Front Endocrinol (Lausanne). 2014;5:65. https://doi.org/10.3389/fendo.2014.00065.

    Article  Google Scholar 

  54. Wang Y, Lam KSL, Xu A. Adiponectin as a negative regulator in obesity-related mammary carcinogenesis. Cell Res. 2007;17:280–2. https://doi.org/10.1038/cr.2007.14.

    Article  CAS  PubMed  Google Scholar 

  55. Ma J-J, Shang J, Wang H, Sui J-R, Liu K, Du J-X. Serum adiponectin levels are inversely correlated with leukemia: a meta-analysis. J Cancer Res Ther. 2016;12:897–902. https://doi.org/10.4103/0973-1482.186695.

    Article  CAS  PubMed  Google Scholar 

  56. Wei T, Ye P, Peng X, Wu L-L, Yu G-Y. Circulating adiponectin levels in various malignancies: an updated meta-analysis of 107 studies. Oncotarget. 2016;7:48671–91. https://doi.org/10.18632/oncotarget.8932.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Goktas S, Yilmaz MI, Caglar K, Sonmez A, Kilic S, Bedir S. Prostate cancer and adiponectin. Urology. 2005;65:1168–72. https://doi.org/10.1016/j.urology.2004.12.053.

    Article  PubMed  Google Scholar 

  58. Gialamas SP, Petridou ET, Tseleni-Balafouta S, Spyridopoulos TN, Matsoukis IL, Kondi-Pafiti A, et al. Serum adiponectin levels and tissue expression of adiponectin receptors are associated with risk, stage, and grade of colorectal cancer. Metabolism. 2011;60:1530–8. https://doi.org/10.1016/j.metabol.2011.03.020.

    Article  CAS  PubMed  Google Scholar 

  59. Petridou E, Mantzoros C, Dessypris N, Koukoulomatis P, Addy C, Voulgaris Z, et al. Plasma adiponectin concentrations in relation to endometrial cancer: a case-control study in Greece. J Clin Endocrinol Metab. 2003;88:993–7. https://doi.org/10.1210/jc.2002-021209.

    Article  CAS  PubMed  Google Scholar 

  60. Mantzoros C, Petridou E, Alexe D-M, Skalkidou A, Dessypris N, Papathoma E, et al. Serum adiponectin concentrations in relation to maternal and perinatal characteristics in newborns. Eur J Endocrinol. 2004;151:741–6.

    Article  CAS  Google Scholar 

  61. Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y, et al. Association of serum adiponectin levels with breast cancer risk. Clin Cancer Res. 2003;9:5699–704.

    CAS  PubMed  Google Scholar 

  62. Chen D-C, Chung Y-F, Yeh Y-T, Chaung H-C, Kuo F-C, Fu O-Y, et al. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer Lett. 2006;237:109–14. https://doi.org/10.1016/j.canlet.2005.05.047.

    Article  CAS  PubMed  Google Scholar 

  63. Jeong Y-J, Bong J-G, Park S-H, Choi J-H, Oh H-K. Expression of leptin, leptin receptor, adiponectin, and adiponectin receptor in ductal carcinoma in situ and invasive breast cancer. J Breast Cancer. 2011;14:96–103. https://doi.org/10.4048/jbc.2011.14.2.96.

    Article  PubMed  PubMed Central  Google Scholar 

  64. •• Kim S, Lee Y, Kim JW, Son Y-J, Ma MJ, Um J-H, et al. Discovery of a novel potent peptide agonist to adiponectin receptor 1. PLoS One. 2018;13:e0199256. https://doi.org/10.1371/journal.pone.0199256. This study describes the discovery of an adiponectin agonist peptide that may provide insight in the development of malignancy therapeutics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–70. https://doi.org/10.1038/27376.

    Article  CAS  Google Scholar 

  66. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim S-Y, et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab. 2011;301:E567–84. https://doi.org/10.1152/ajpendo.00315.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Booth A, Magnuson A, Fouts J, Foster M. Adipose tissue, obesity and adipokines: role in cancer promotion. Horm Mol Biol Clin Investig. 2015;21:57–74. https://doi.org/10.1515/hmbci-2014-0037.

    Article  CAS  PubMed  Google Scholar 

  68. Sharma D, Saxena NK, Vertino PM, Anania FA. Leptin promotes the proliferative response and invasiveness in human endometrial cancer cells by activating multiple signal-transduction pathways. Endocr Relat Cancer. 2006;13:629–40. https://doi.org/10.1677/erc.1.01169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Choi J-H, Park S-H, Leung PCK, Choi K-C. Expression of leptin receptors and potential effects of leptin on the cell growth and activation of mitogen-activated protein kinases in ovarian cancer cells. J Clin Endocrinol Metab. 2005;90:207–10. https://doi.org/10.1210/jc.2004-0297.

    Article  CAS  PubMed  Google Scholar 

  70. Wang Y, Prywes R. Activation of the c-fos enhancer by the erk MAP kinase pathway through two sequence elements: the c-fos AP-1 and p62TCF sites. Oncogene. 2000;19:1379–85. https://doi.org/10.1038/sj.onc.1203443.

    Article  CAS  PubMed  Google Scholar 

  71. Frankenberry KA, Skinner H, Somasundar P, McFadden DW, Vona-Davis LC. Leptin receptor expression and cell signaling in breast cancer. Int J Oncol. 2006;28:985–93.

    CAS  PubMed  Google Scholar 

  72. Harris HR, Tworoger SS, Hankinson SE, Rosner BA, Michels KB. Plasma leptin levels and risk of breast cancer in premenopausal women. Cancer Prev Res. 2011;4:1449–56. https://doi.org/10.1158/1940-6207.CAPR-11-0125.

    Article  CAS  Google Scholar 

  73. Niu J, Jiang L, Guo W, Shao L, Liu Y, Wang L. The association between leptin level and breast cancer: a meta-analysis. PLoS One. 2013;8:e67349. https://doi.org/10.1371/journal.pone.0067349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Andò S, Catalano S. The multifactorial role of leptin in driving the breast cancer microenvironment. Nat Rev Endocrinol. 2011;8:263–75. https://doi.org/10.1038/nrendo.2011.184.

    Article  CAS  PubMed  Google Scholar 

  75. García-Robles MJ, Segura-Ortega JE, Fafutis-Morris M. The biology of leptin and its implications in breast cancer: a general view. J Interf Cytokine Res. 2013;33:717–27. https://doi.org/10.1089/jir.2012.0168.

    Article  CAS  Google Scholar 

  76. Jardé T, Perrier S, Vasson M-P, Caldefie-Chézet F. Molecular mechanisms of leptin and adiponectin in breast cancer. Eur J Cancer. 2011;47:33–43. https://doi.org/10.1016/j.ejca.2010.09.005.

    Article  CAS  PubMed  Google Scholar 

  77. Dubois V, Jardé T, Delort L, Billard H, Bernard-Gallon D, Berger E, et al. Leptin induces a proliferative response in breast cancer cells but not in normal breast cells. Nutr Cancer. 2014;66:645–55. https://doi.org/10.1080/01635581.2014.894104.

    Article  CAS  PubMed  Google Scholar 

  78. Allott EH, Masko EM, Freedland SJ. Obesity and prostate cancer: weighing the evidence. Eur Urol. 2013;63:800–9. https://doi.org/10.1016/j.eururo.2012.11.013.

    Article  CAS  PubMed  Google Scholar 

  79. Dong Z, Fu S, Xu X, Yang Y, Du L, Li W, et al. Leptin-mediated regulation of ICAM-1 is Rho/ROCK dependent and enhances gastric cancer cell migration. Br J Cancer. 2014;110:1801–10. https://doi.org/10.1038/bjc.2014.70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Koda M, Sulkowska M, Kanczuga-Koda L, Surmacz E, Sulkowski S. Overexpression of the obesity hormone leptin in human colorectal cancer. J Clin Pathol. 2006;60:902–6. https://doi.org/10.1136/jcp.2006.041004.

    Article  Google Scholar 

  81. Dalamaga M, Polyzos SA, Karmaniolas K, Chamberland J, Lekka A, Triantafilli M, et al. Fetuin-A levels and free leptin index are reduced in patients with chronic lymphocytic leukemia: a hospital-based case-control study. Leuk Lymphoma. 2016;57:577–84. https://doi.org/10.3109/10428194.2015.1075523.

    Article  CAS  PubMed  Google Scholar 

  82. Dalamaga M, Karmaniolas K, Panagiotou A, Hsi A, Chamberland J, Dimas C, et al. Low circulating adiponectin and resistin, but not leptin, levels are associated with multiple myeloma risk: a case–control study. Cancer Causes Control. 2009;20:193–9. https://doi.org/10.1007/s10552-008-9233-7.

    Article  PubMed  Google Scholar 

  83. Pan H, Deng L-L, Cui J-Q, Shi L, Yang Y-C, Luo J-H, et al. Association between serum leptin levels and breast cancer risk. Medicine (Baltimore). 2018;97:e11345. https://doi.org/10.1097/MD.0000000000011345.

    Article  CAS  Google Scholar 

  84. Wang P-P, He X-Y, Wang R, Wang Z, Wang Y-G. High leptin level is an independent risk factor of endometrial cancer: a meta-analysis. Cell Physiol Biochem. 2014;34:1477–84. https://doi.org/10.1159/000366352.

    Article  CAS  PubMed  Google Scholar 

  85. • Tong X, Ma Y, Zhou Q, He J, Peng B, Liu S, et al. Serum and tissue leptin in lung cancer: a meta-analysis. Oncotarget. 2017;8:19699–711. https://doi.org/10.18632/oncotarget.14963. This meta-analysis investigated the relation of leptin serum and tissue levels with lung cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dalamaga M, Migdalis I, Fargnoli JL, Papadavid E, Bloom E, Mitsiades N, et al. Pancreatic cancer expresses adiponectin receptors and is associated with hypoleptinemia and hyperadiponectinemia: a case–control study. Cancer Causes Control. 2009;20:625–33. https://doi.org/10.1007/s10552-008-9273-z.

    Article  PubMed  Google Scholar 

  87. Dalamaga M, Polyzos SA, Karmaniolas K, Chamberland J, Lekka A, Migdalis I, et al. Circulating fetuin-A in patients with pancreatic cancer: a hospital-based case-control study. Biomarkers. 2014;19:660–6. https://doi.org/10.3109/1354750X.2014.974071.

    Article  CAS  PubMed  Google Scholar 

  88. Dalamaga M, Crotty BH, Fargnoli J, Papadavid E, Lekka A, Triantafilli M, et al. B-cell chronic lymphocytic leukemia risk in association with serum leptin and adiponectin: a case–control study in Greece. Cancer Causes Control. 2010;21:1451–9. https://doi.org/10.1007/s10552-010-9573-y.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Dalamaga M, Karmaniolas K, Chamberland J, Nikolaidou A, Lekka A, Dionyssiou-Asteriou A, et al. Higher fetuin-A, lower adiponectin and free leptin levels mediate effects of excess body weight on insulin resistance and risk for myelodysplastic syndrome. Metabolism. 2013;62:1830–9. https://doi.org/10.1016/j.metabol.2013.09.007.

    Article  CAS  PubMed  Google Scholar 

  90. Dalamaga M, Karmaniolas K, Nikolaidou A, Chamberland J, Hsi A, Dionyssiou-Asteriou A, et al. Adiponectin and resistin are associated with risk for myelodysplastic syndrome, independently from the insulin-like growth factor-I (IGF-I) system. Eur J Cancer. 2008;44:1744–53. https://doi.org/10.1016/j.ejca.2008.04.015.

    Article  CAS  PubMed  Google Scholar 

  91. Dalamaga M, Nikolaidou A, Karmaniolas K, Hsi A, Chamberland J, Dionyssiou-Asteriou A, et al. Circulating adiponectin and leptin in relation to myelodysplastic syndrome: a case-control study. Oncology. 2007;73:26–32. https://doi.org/10.1159/000120995.

    Article  PubMed  Google Scholar 

  92. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409:307–12. https://doi.org/10.1038/35053000.

    Article  CAS  PubMed  Google Scholar 

  93. Krecki R, Drozdz J, Szcześniak P, Orszulak-Michalak D, Krzemińska-Pakuła M. Novel atherogenesis markers for identification of patients with a multivessel coronary artery disease. Kardiol Pol. 2008;66:1173-80-2.

    Google Scholar 

  94. Forrest OA, Chopyk DM, Gernez Y, Brown MR, Conrad CK, Moss RB, et al. Resistin is elevated in cystic fibrosis sputum and correlates negatively with lung function. J Cyst Fibros. 2018; https://doi.org/10.1016/j.jcf.2018.05.018.

  95. Gong W-J, Zheng W, Xiao L, Tan L-M, Song J, Li X-P, et al. Circulating resistin levels and obesity-related cancer risk: a meta-analysis. Oncotarget. 2016;7:57694–704. https://doi.org/10.18632/oncotarget.11034.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol. 1994;14:1431–7.

    Article  CAS  Google Scholar 

  97. Rongvaux A, Shea RJ, Mulks MH, Gigot D, Urbain J, Leo O, et al. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol. 2002;32:3225–34. https://doi.org/10.1002/1521-4141(200211)32:11<3225::AID-IMMU3225>3.0.CO;2-L.

    Article  CAS  PubMed  Google Scholar 

  98. Ming G, Li X, Yin J, Ai Y, Xu D, Ma X, et al. JAZF1 regulates visfatin expression in adipocytes via PPARα and PPARβ/δ signaling. Metabolism. 2014;63:1012–21. https://doi.org/10.1016/j.metabol.2014.05.006.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang LQ, Heruth DP, Ye SQ. Nicotinamide phosphoribosyltransferase in human diseases. J Bioanal Biomed. 2011;3:13–25. https://doi.org/10.4172/1948-593X.1000038.

    Article  CAS  PubMed  Google Scholar 

  100. Duarte-Pereira S, Silva SS, Azevedo L, Castro L, Amorim A, Silva RM. NAMPT and NAPRT1: novel polymorphisms and distribution of variants between normal tissues and tumor samples. Sci Rep. 2014;4:6311. https://doi.org/10.1038/srep06311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Olszanecka-Glinianowicz M, Owczarek A, Bożentowicz-Wikarek M, Brzozowska A, Mossakowska M, Zdrojewski T, et al. Relationship between circulating visfatin/NAMPT, nutritional status and insulin resistance in an elderly population—results from the PolSenior substudy. Metabolism. 2014;63:1409–18. https://doi.org/10.1016/j.metabol.2014.07.013.

    Article  CAS  PubMed  Google Scholar 

  102. Galli M, Van Gool F, Rongvaux A, Andris F, Leo O. The nicotinamide phosphoribosyltransferase: a molecular link between metabolism, inflammation, and cancer. Cancer Res. 2010;70:8–11. https://doi.org/10.1158/0008-5472.CAN-09-2465.

    Article  CAS  PubMed  Google Scholar 

  103. Moschen AR, Gerner RR, Tilg H. Pre-B cell colony enhancing factor/NAMPT/visfatin in inflammation and obesity-related disorders. Curr Pharm Des. 2010;16:1913–20.

    Article  CAS  Google Scholar 

  104. Park H-J, Kim S-R, Kim SS, Wee H-J, Bae M-K, Ryu MH, et al. Visfatin promotes cell and tumor growth by upregulating Notch1 in breast cancer. Oncotarget. 2014;5:5087–99. https://doi.org/10.18632/oncotarget.2086.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol. 2007;178:1748–58.

    Article  CAS  Google Scholar 

  106. Audrito V, Serra S, Brusa D, Mazzola F, Arruga F, Vaisitti T, et al. Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia. Blood. 2015;125:111–23. https://doi.org/10.1182/blood-2014-07-589069.

    Article  CAS  PubMed  Google Scholar 

  107. Reddy PS, Umesh S, Thota B, Tandon A, Pandey P, Hegde AS, et al. PBEF1/NAmPRTase/Visfatin: a potential malignant astrocytoma/glioblastoma serum marker with prognostic value. Cancer Biol Ther. 2008;7:663–8.

    Article  CAS  Google Scholar 

  108. Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD, et al. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem. 2007;282:28175–88. https://doi.org/10.1074/jbc.M700793200.

    Article  CAS  PubMed  Google Scholar 

  109. Wittamer V, Franssen J-D, Vulcano M, Mirjolet J-F, Le Poul E, Migeotte I, et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med. 2003;198:977–85. https://doi.org/10.1084/jem.20030382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bozaoglu K, Bolton K, McMillan J, Zimmet P, Jowett J, Collier G, et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology. 2007;148:4687–94. https://doi.org/10.1210/en.2007-0175.

    Article  CAS  PubMed  Google Scholar 

  111. Chakaroun R, Raschpichler M, Klöting N, Oberbach A, Flehmig G, Kern M, et al. Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity. Metabolism. 2012;61:706–14. https://doi.org/10.1016/j.metabol.2011.10.008.

    Article  CAS  PubMed  Google Scholar 

  112. Aronis KN, Sahin-Efe A, Chamberland JP, Spiro A, Vokonas P, Mantzoros CS. Chemerin levels as predictor of acute coronary events: a case–control study nested within the veterans affairs normative aging study. Metabolism. 2014;63:760–6. https://doi.org/10.1016/j.metabol.2014.02.013.

    Article  CAS  PubMed  Google Scholar 

  113. Wang C, Wu WKK, Liu X, To K-F, Chen GG, Yu J, et al. Increased serum chemerin level promotes cellular invasiveness in gastric cancer: a clinical and experimental study. Peptides. 2014;51:131–8. https://doi.org/10.1016/j.peptides.2013.10.009.

    Article  CAS  PubMed  Google Scholar 

  114. Erdogan S, Yilmaz FM, Yazici O, Yozgat A, Sezer S, Ozdemir N, et al. Inflammation and chemerin in colorectal cancer. Tumour Biol. 2016;37:6337–42. https://doi.org/10.1007/s13277-015-4483-y.

    Article  CAS  PubMed  Google Scholar 

  115. Zhang J, Jin H-C, Zhu A-K, Ying R-C, Wei W, Zhang F-J. Prognostic significance of plasma chemerin levels in patients with gastric cancer. Peptides. 2014;61:7–11. https://doi.org/10.1016/j.peptides.2014.08.007.

    Article  CAS  PubMed  Google Scholar 

  116. Kaur J, Adya R, Tan BK, Chen J, Randeva HS. Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun. 2010;391:1762–8. https://doi.org/10.1016/j.bbrc.2009.12.150.

    Article  CAS  PubMed  Google Scholar 

  117. Tümmler C, Snapkov I, Wickström M, Moens U, Ljungblad L, Maria Elfman LH, et al. Inhibition of chemerin/CMKLR1 axis in neuroblastoma cells reduces clonogenicity and cell viability in vitro and impairs tumor growth in vivo. Oncotarget. 2017;8:95135–51. https://doi.org/10.18632/oncotarget.19619.

    Article  PubMed  PubMed Central  Google Scholar 

  118. • Lin Y, Yang X, Liu W, Li B, Yin W, Shi Y, et al. Chemerin has a protective role in hepatocellular carcinoma by inhibiting the expression of IL-6 and GM-CSF and MDSC accumulation. Oncogene. 2017;36:3599–608. https://doi.org/10.1038/onc.2016.516. This study displayed the tumor-suppressive effect of chemerin mediated by the inhibition of the tumor microenvironment inflammation.

    Article  CAS  PubMed  Google Scholar 

  119. Yang R-Z, Lee M-J, Hu H, Pray J, Wu H-B, Hansen BC, et al. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab. 2006;290:E1253–61. https://doi.org/10.1152/ajpendo.00572.2004.

    Article  CAS  PubMed  Google Scholar 

  120. Shibata R, Ouchi N, Takahashi R, Terakura Y, Ohashi K, Ikeda N, et al. Omentin as a novel biomarker of metabolic risk factors. Diabetol Metab Syndr. 2012;4:37. https://doi.org/10.1186/1758-5996-4-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Panagiotou G, Mu L, Na B, Mukamal KJ, Mantzoros CS. Circulating irisin, omentin-1, and lipoprotein subparticles in adults at higher cardiovascular risk. Metabolism. 2014;63:1265–71. https://doi.org/10.1016/j.metabol.2014.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang Y-Y, Zhou L-M. Omentin-1, a new adipokine, promotes apoptosis through regulating Sirt1-dependent p53 deacetylation in hepatocellular carcinoma cells. Eur J Pharmacol. 2013;698:137–44. https://doi.org/10.1016/j.ejphar.2012.11.016.

    Article  CAS  PubMed  Google Scholar 

  123. • Kawashima K, Maeda K, Saigo C, Kito Y, Yoshida K, Takeuchi T. Adiponectin and intelectin-1: important adipokine players in obesity-related colorectal carcinogenesis. Int J Mol Sci 2017;18. doi:https://doi.org/10.3390/ijms18040866. This review analyses the complex relation of the tumor suppresive adipokines, adiponectin and intelectin-1 with colorectal cancer.

    Article  Google Scholar 

  124. Shen X-D, Zhang L, Che H, Zhang Y-Y, Yang C, Zhou J, et al. Circulating levels of adipocytokine omentin-1 in patients with renal cell cancer. Cytokine. 2016;77:50–5. https://doi.org/10.1016/j.cyto.2015.09.004.

    Article  CAS  PubMed  Google Scholar 

  125. Aleksandrova K, di Giuseppe R, Isermann B, Biemann R, Schulze M, Wittenbecher C, et al. Circulating omentin as a novel biomarker for colorectal cancer risk: data from the EPIC-Potsdam Cohort Study. Cancer Res. 2016;76:3862–71. https://doi.org/10.1158/0008-5472.CAN-15-3464.

    Article  CAS  PubMed  Google Scholar 

  126. Uyeturk U, Alcelik A, Aktas G, Tekce BK. Post-treatment plasma omentin levels in patients with stage III colon carcinoma. J BUON. 2014;19:681–5.

    PubMed  Google Scholar 

  127. Karabulut S, Afsar CU, Karabulut M, Alis H, Bozkurt MA, Aydogan F, et al. Clinical significance of serum omentin-1 levels in patients with pancreatic adenocarcinoma. BBA Clin. 2016;6:138–42. https://doi.org/10.1016/j.bbacli.2016.10.002.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Li D, Mei H, Pu J, Xiang X, Zhao X, Qu H, et al. Intelectin 1 suppresses the growth, invasion and metastasis of neuroblastoma cells through up-regulation of N-myc downstream regulated gene 2. Mol Cancer. 2015;14:47. https://doi.org/10.1186/s12943-015-0320-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Carpéné C, Dray C, Attané C, Valet P, Portillo MP, Churruca I, et al. Expanding role for the apelin/APJ system in physiopathology. J Physiol Biochem. 2007;63:359–73.

    Article  Google Scholar 

  130. Boucher J, Masri B, Daviaud D, Gesta S, Guigné C, Mazzucotelli A, et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology. 2005;146:1764–71. https://doi.org/10.1210/en.2004-1427.

    Article  CAS  PubMed  Google Scholar 

  131. Castan-Laurell I, Dray C, Attané C, Duparc T, Knauf C, Valet P. Apelin, diabetes, and obesity. Endocrine. 2011;40:1–9. https://doi.org/10.1007/s12020-011-9507-9.

    Article  CAS  PubMed  Google Scholar 

  132. Cavallo MG, Sentinelli F, Barchetta I, Costantino C, Incani M, Perra L, et al. Altered glucose homeostasis is associated with increased serum apelin levels in type 2 diabetes mellitus. PLoS One. 2012;7:e51236. https://doi.org/10.1371/journal.pone.0051236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wysocka MB, Pietraszek-Gremplewicz K, Nowak D. The role of apelin in cardiovascular diseases, obesity and cancer. Front Physiol. 2018;9:557. https://doi.org/10.3389/fphys.2018.00557.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Lacquaniti A, Altavilla G, Picone A, Donato V, Chirico V, Mondello P, et al. Apelin beyond kidney failure and hyponatremia: a useful biomarker for cancer disease progression evaluation. Clin Exp Med. 2015;15:97–105. https://doi.org/10.1007/s10238-014-0272-y.

    Article  CAS  PubMed  Google Scholar 

  135. Noy N, Li L, Abola MV, Berger NA. Is retinol binding protein 4 a link between adiposity and cancer? Horm Mol Biol Clin Investig. 2015;23:39–46. https://doi.org/10.1515/hmbci-2015-0019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kotnik P, Fischer-Posovszky P, Wabitsch M. RBP4: a controversial adipokine. Eur J Endocrinol. 2011;165:703–11. https://doi.org/10.1530/EJE-11-0431.

    Article  CAS  PubMed  Google Scholar 

  137. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436:356–62. https://doi.org/10.1038/nature03711.

    Article  CAS  PubMed  Google Scholar 

  138. Cao H. Adipocytokines in obesity and metabolic disease. J Endocrinol. 2014;220:T47–59. https://doi.org/10.1530/JOE-13-0339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang Y, Wang Y, Zhang Z. Adipokine RBP4 drives ovarian cancer cell migration. J Ovarian Res. 2018;11:29. https://doi.org/10.1186/s13048-018-0397-9.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Jiao C, Cui L, Ma A, Li N, Si H. Elevated serum levels of retinol-binding protein 4 are associated with breast cancer risk: a case-control study. PLoS One. 2016;11:e0167498. https://doi.org/10.1371/journal.pone.0167498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fei W, Chen L, Chen J, Shi Q, Zhang L, Liu S, et al. RBP4 and THBS2 are serum biomarkers for diagnosis of colorectal cancer. Oncotarget. 2017;8:92254–64. https://doi.org/10.18632/oncotarget.21173.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hida K, Wada J, Eguchi J, Zhang H, Baba M, Seida A, et al. Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci U S A. 2005;102:10610–5. https://doi.org/10.1073/pnas.0504703102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Heiker JT. Vaspin (serpinA12) in obesity, insulin resistance, and inflammation. J Pept Sci. 2014;20:299–306. https://doi.org/10.1002/psc.2621.

    Article  CAS  PubMed  Google Scholar 

  144. Wada J. Vaspin: a novel serpin with insulin-sensitizing effects. Expert Opin Investig Drugs. 2008;17:327–33. https://doi.org/10.1517/13543784.17.3.327.

    Article  CAS  PubMed  Google Scholar 

  145. El-Mesallamy HO, Kassem DH, El-Demerdash E, Amin AI. Vaspin and visfatin/Nampt are interesting interrelated adipokines playing a role in the pathogenesis of type 2 diabetes mellitus. Metabolism. 2011;60:63–70. https://doi.org/10.1016/j.metabol.2010.04.008.

    Article  CAS  PubMed  Google Scholar 

  146. Erdogan S, Sezer S, Baser E, Gun-Eryilmaz O, Gungor T, Uysal S, et al. Evaluating vaspin and adiponectin in postmenopausal women with endometrial cancer. Endocr Relat Cancer. 2013;20:669–75. https://doi.org/10.1530/ERC-13-0280.

    Article  CAS  PubMed  Google Scholar 

  147. Fazeli MS, Dashti H, Akbarzadeh S, Assadi M, Aminian A, Keramati MR, et al. Circulating levels of novel adipocytokines in patients with colorectal cancer. Cytokine. 2013;62:81–5. https://doi.org/10.1016/j.cyto.2013.02.012.

    Article  CAS  PubMed  Google Scholar 

  148. Cymbaluk-Płoska A, Chudecka-Głaz A, Jagodzińska A, Pius-Sadowska E, Sompolska-Rzechuła A, Machaliński B, et al. Evaluation of biologically active substances promoting the development of or protecting against endometrial cancer. Onco Targets Ther. 2018;11:1363–72. https://doi.org/10.2147/OTT.S155942.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ramanjaneya M, Chen J, Brown JE, Tripathi G, Hallschmid M, Patel S, et al. Identification of nesfatin-1 in human and murine adipose tissue: a novel depot-specific adipokine with increased levels in obesity. Endocrinology. 2010;151:3169–80. https://doi.org/10.1210/en.2009-1358.

    Article  CAS  PubMed  Google Scholar 

  150. Xu L, Wang H, Gong Y, Pang M, Sun X, Guo F, et al. Nesfatin-1 regulates the lateral hypothalamic area melanin-concentrating hormone-responsive gastric distension-sensitive neurons and gastric function via arcuate nucleus innervation. Metabolism. 2017;67:14–25. https://doi.org/10.1016/j.metabol.2016.10.010.

    Article  CAS  PubMed  Google Scholar 

  151. Riva M, Nitert MD, Voss U, Sathanoori R, Lindqvist A, Ling C, et al. Nesfatin-1 stimulates glucagon and insulin secretion and beta cell NUCB2 is reduced in human type 2 diabetic subjects. Cell Tissue Res. 2011;346:393–405. https://doi.org/10.1007/s00441-011-1268-5.

    Article  CAS  PubMed  Google Scholar 

  152. Xu Y, Pang X, Dong M, Wen F, Zhang Y. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro. Biochem Biophys Res Commun. 2013;440:467–72. https://doi.org/10.1016/j.bbrc.2013.06.001.

    Article  CAS  PubMed  Google Scholar 

  153. Wang L, Ellis MJ, Gomez JA, Eisner W, Fennell W, Howell DN, et al. Mechanisms of the proteinuria induced by Rho GTPases. Kidney Int. 2012;81:1075–85. https://doi.org/10.1038/ki.2011.472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cetinkaya H, Karagöz B, Bilgi O, Ozgün A, Tunçel T, Emirzeoğlu L, et al. Nesfatin-1 in advanced lung cancer patients with weight loss. Regul Pept. 2013;181:1–3. https://doi.org/10.1016/j.regpep.2012.11.005.

    Article  CAS  PubMed  Google Scholar 

  155. Franzén A, Heinegård D. Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem J. 1985;232:715–24.

    Article  Google Scholar 

  156. Kahles F, Findeisen HM, Bruemmer D. Osteopontin: a novel regulator at the cross roads of inflammation, obesity and diabetes. Mol Metab. 2014;3:384–93. https://doi.org/10.1016/j.molmet.2014.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lai C-F, Seshadri V, Huang K, Shao J-S, Cai J, Vattikuti R, et al. An osteopontin-NADPH oxidase signaling cascade promotes pro-matrix metalloproteinase 9 activation in aortic mesenchymal cells. Circ Res. 2006;98:1479–89. https://doi.org/10.1161/01.RES.0000227550.00426.60.

    Article  CAS  PubMed  Google Scholar 

  158. Rangaswami H, Bulbule A, Kundu GC. Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol. 2006;16:79–87. https://doi.org/10.1016/j.tcb.2005.12.005.

    Article  CAS  PubMed  Google Scholar 

  159. Johnston NIF, Gunasekharan VK, Ravindranath A, O’Connell C, Johnston PG, El-Tanani MK. Osteopontin as a target for cancer therapy. Front Biosci. 2008;13:4361–72.

    Article  CAS  Google Scholar 

  160. Rodrigues LR, Teixeira JA, Schmitt FL, Paulsson M, Lindmark-Mänsson H. The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomark Prev. 2007;16:1087–97. https://doi.org/10.1158/1055-9965.EPI-06-1008.

    Article  CAS  Google Scholar 

  161. Bandopadhyay M, Bulbule A, Butti R, Chakraborty G, Ghorpade P, Ghosh P, et al. Osteopontin as a therapeutic target for cancer. Expert Opin Ther Targets. 2014;18:883–95. https://doi.org/10.1517/14728222.2014.925447.

    Article  CAS  PubMed  Google Scholar 

  162. Rittling SR, Chambers AF. Role of osteopontin in tumour progression. Br J Cancer. 2004;90:1877–81. https://doi.org/10.1038/sj.bjc.6601839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zarling JM, Shoyab M, Marquardt H, Hanson MB, Lioubin MN, Todaro GJ. Oncostatin M: a growth regulator produced by differentiated histiocytic lymphoma cells. Proc Natl Acad Sci U S A. 1986;83:9739–43.

    Article  CAS  Google Scholar 

  164. Sanchez-Infantes D, White UA, Elks CM, Morrison RF, Gimble JM, Considine RV, et al. Oncostatin m is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes. J Clin Endocrinol Metab. 2014;99:E217–25. https://doi.org/10.1210/jc.2013-3555.

    Article  CAS  PubMed  Google Scholar 

  165. Richards CD. The enigmatic cytokine oncostatin M and roles in disease. ISRN Inflamm. 2013;2013:1–23. https://doi.org/10.1155/2013/512103.

    Article  CAS  Google Scholar 

  166. Miles SA, Martínez-Maza O, Rezai A, Magpantay L, Kishimoto T, Nakamura S, et al. Oncostatin M as a potent mitogen for AIDS-Kaposi’s sarcoma-derived cells. Science. 1992;255:1432–4.

    Article  CAS  Google Scholar 

  167. Amaral MC, Miles S, Kumar G, Nel AE. Oncostatin-M stimulates tyrosine protein phosphorylation in parallel with the activation of p42MAPK/ERK-2 in Kaposi’s cells. Evidence that this pathway is important in Kaposi cell growth. J Clin Invest. 1993;92:848–57. https://doi.org/10.1172/JCI116659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lapeire L, Hendrix A, Lambein K, Van Bockstal M, Braems G, Van Den Broecke R, et al. Cancer-associated adipose tissue promotes breast cancer progression by paracrine oncostatin M and Jak/STAT3 signaling. Cancer Res. 2014;74:6806–19. https://doi.org/10.1158/0008-5472.CAN-14-0160.

    Article  CAS  PubMed  Google Scholar 

  169. Fossey SL, Bear MD, Kisseberth WC, Pennell M, London CA. Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines. BMC Cancer. 2011;11:125. https://doi.org/10.1186/1471-2407-11-125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Weiss TW, Simak R, Kaun C, Rega G, Pflüger H, Maurer G, et al. Oncostatin M and IL-6 induce u-PA and VEGF in prostate cancer cells and correlate in vivo. Anticancer Res. 2011;31:3273–8.

    CAS  PubMed  Google Scholar 

  171. • Tawara K, Bolin C, Koncinsky J, Kadaba S, Covert H, Sutherland C, et al. OSM potentiates preintravasation events, increases CTC counts, and promotes breast cancer metastasis to the lung. Breast Cancer Res. 2018;20:–53. https://doi.org/10.1186/s13058-018-0971-5. This study describes the ability of oncostatin-M to facilitate metastasis of breast cancer.

  172. West NR, Murphy LC, Watson PH. Oncostatin M suppresses oestrogen receptor- expression and is associated with poor outcome in human breast cancer. Endocr Relat Cancer. 2012;19:181–95. https://doi.org/10.1530/ERC-11-0326.

    Article  CAS  PubMed  Google Scholar 

  173. Vucenik I, Stains JP. Obesity and cancer risk: evidence, mechanisms, and recommendations. Ann N Y Acad Sci. 2012;1271:37–43. https://doi.org/10.1111/j.1749-6632.2012.06750.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ligibel JA, Alfano CM, Courneya KS, Demark-Wahnefried W, Burger RA, Chlebowski RT, et al. American Society of Clinical Oncology position statement on obesity and cancer. J Clin Oncol. 2014;32:3568–74. https://doi.org/10.1200/JCO.2014.58.4680.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Moschen AR, Molnar C, Wolf AM, Weiss H, Graziadei I, Kaser S, et al. Effects of weight loss induced by bariatric surgery on hepatic adipocytokine expression. J Hepatol. 2009;51:765–77. https://doi.org/10.1016/j.jhep.2009.06.016.

    Article  CAS  PubMed  Google Scholar 

  176. Venojärvi M, Wasenius N, Manderoos S, Heinonen OJ, Hernelahti M, Lindholm H, et al. Nordic walking decreased circulating chemerin and leptin concentrations in middle-aged men with impaired glucose regulation. Ann Med. 2013;45:162–70. https://doi.org/10.3109/07853890.2012.727020.

    Article  CAS  PubMed  Google Scholar 

  177. Tee MC, Cao Y, Warnock GL, Hu FB, Chavarro JE. Effect of bariatric surgery on oncologic outcomes: a systematic review and meta-analysis. Surg Endosc. 2013;27:4449–56. https://doi.org/10.1007/s00464-013-3127-9.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Ashrafian H, Ahmed K, Rowland SP, Patel VM, Gooderham NJ, Holmes E, et al. Metabolic surgery and cancer: protective effects of bariatric procedures. Cancer. 2011;117:1788–99. https://doi.org/10.1002/cncr.25738.

    Article  PubMed  Google Scholar 

  179. Haider DG, Schindler K, Schaller G, Prager G, Wolzt M, Ludvik B. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab. 2006;91:1578–81. https://doi.org/10.1210/jc.2005-2248.

    Article  CAS  PubMed  Google Scholar 

  180. Terra X, Auguet T, Guiu-Jurado E, Berlanga A, Orellana-Gavaldà JM, Hernández M, et al. Long-term changes in leptin, chemerin and ghrelin levels following different bariatric surgery procedures: Roux-en-Y gastric bypass and sleeve gastrectomy. Obes Surg. 2013;23:1790–8. https://doi.org/10.1007/s11695-013-1033-9.

    Article  PubMed  Google Scholar 

  181. Zhu J, Schott M, Liu R, Liu C, Shen B, Wang Q, et al. Intensive glycemic control lowers plasma visfatin levels in patients with type 2 diabetes. Horm Metab Res. 2008;40:801–5. https://doi.org/10.1055/s-0028-1082040.

    Article  CAS  PubMed  Google Scholar 

  182. Mallik R, Chowdhury TA. Metformin in cancer. Diabetes Res Clin Pract. 2018; https://doi.org/10.1016/j.diabres.2018.05.023.

    Article  CAS  Google Scholar 

  183. Hajavi J, Momtazi AA, Johnston TP, Banach M, Majeed M, Sahebkar A. Curcumin: a naturally occurring modulator of adipokines in diabetes. J Cell Biochem. 2017;118:4170–82. https://doi.org/10.1002/jcb.26121.

    Article  CAS  PubMed  Google Scholar 

  184. Rene Gonzalez R, Watters A, Xu Y, Singh UP, Mann DR, Rueda BR, et al. Leptin-signaling inhibition results in efficient anti-tumor activity in estrogen receptor positive or negative breast cancer. Breast Cancer Res. 2009;11:R36. https://doi.org/10.1186/bcr2321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lanier V, Gillespie C, Leffers M, Daley-Brown D, Milner J, Lipsey C, et al. Leptin-induced transphosphorylation of vascular endothelial growth factor receptor increases Notch and stimulates endothelial cell angiogenic transformation. Int J Biochem Cell Biol. 2016;79:139–50. https://doi.org/10.1016/j.biocel.2016.08.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Khan S, Shukla S, Sinha S, Meeran SM. Role of adipokines and cytokines in obesity-associated breast cancer: therapeutic targets. Cytokine Growth Factor Rev. 2013;24:503–13. https://doi.org/10.1016/j.cytogfr.2013.10.001.

    Article  CAS  PubMed  Google Scholar 

  187. Otvos L, Kovalszky I, Olah J, Coroniti R, Knappe D, Nollmann FI, et al. Optimization of adiponectin-derived peptides for inhibition of cancer cell growth and signaling. Biopolymers. 2015;104:156–66. https://doi.org/10.1002/bip.22627.

    Article  CAS  PubMed  Google Scholar 

  188. Tworoger SS, Eliassen AH, Kelesidis T, Colditz GA, Willett WC, Mantzoros CS, et al. Plasma adiponectin concentrations and risk of incident breast cancer. J Clin Endocrinol Metab. 2007;92:1510–6. https://doi.org/10.1210/jc.2006-1975.

    Article  CAS  PubMed  Google Scholar 

  189. Chong DQ, Mehta RS, Song M, Kedrin D, Meyerhardt JA, Ng K, et al. Prediagnostic plasma adiponectin and survival among patients with colorectal cancer. Cancer Prev Res (Phila). 2015;8:1138–45. https://doi.org/10.1158/1940-6207.CAPR-15-0175.

    Article  CAS  Google Scholar 

  190. Dalamaga M, Sotiropoulos G, Karmaniolas K, Pelekanos N, Papadavid E, Lekka A. Serum resistin: a biomarker of breast cancer in postmenopausal women? Association with clinicopathological characteristics, tumor markers, inflammatory and metabolic parameters. Clin Biochem. 2013;46:584–90. https://doi.org/10.1016/j.clinbiochem.2013.01.001.

    Article  CAS  PubMed  Google Scholar 

  191. Dalamaga M, Archondakis S, Sotiropoulos G, Karmaniolas K, Pelekanos N, Papadavid E, et al. Could serum visfatin be a potential biomarker for postmenopausal breast cancer? Maturitas. 2012;71:301–8. https://doi.org/10.1016/j.maturitas.2011.12.013.

    Article  CAS  PubMed  Google Scholar 

  192. Zhang K, Zhou B, Zhang P, Zhang Z, Chen P, Pu Y, et al. Genetic variants in NAMPT predict bladder cancer risk and prognosis in individuals from southwest Chinese Han group. Tumour Biol. 2014;35:4031–40. https://doi.org/10.1007/s13277-013-1527-z.

    Article  CAS  PubMed  Google Scholar 

  193. Kalia M. Biomarkers for personalized oncology: recent advances and future challenges. Metabolism. 2015;64:S16–21. https://doi.org/10.1016/j.metabol.2014.10.027.

    Article  CAS  PubMed  Google Scholar 

  194. Burgess S, Timpson NJ, Ebrahim S, Davey Smith G. Mendelian randomization: where are we now and where are we going? Int J Epidemiol. 2015;44:379–88. https://doi.org/10.1093/ije/dyv108.

    Article  PubMed  Google Scholar 

  195. Ebrahim S, Davey SG. Mendelian randomization: can genetic epidemiology help redress the failures of observational epidemiology? Hum Genet. 2008;123:15–33. https://doi.org/10.1007/s00439-007-0448-6.

    Article  PubMed  Google Scholar 

  196. Nimptsch K, Song M, Aleksandrova K, Katsoulis M, Freisling H, Jenab M, et al. Genetic variation in the ADIPOQ gene, adiponectin concentrations and risk of colorectal cancer: a Mendelian randomization analysis using data from three large cohort studies. Eur J Epidemiol. 2017;32:419–30. https://doi.org/10.1007/s10654-017-0262-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Dalamaga.

Ethics declarations

Conflict of Interest

Nikolaos Spyrou, Konstantinos I. Avgerinos, Christos S Mantzoros, and Maria Dalamaga declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spyrou, N., Avgerinos, K.I., Mantzoros, C.S. et al. Classic and Novel Adipocytokines at the Intersection of Obesity and Cancer: Diagnostic and Therapeutic Strategies. Curr Obes Rep 7, 260–275 (2018). https://doi.org/10.1007/s13679-018-0318-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-018-0318-7

Keywords

Navigation