Skip to main content

Advertisement

Log in

A New Approach to Polycystic Ovary Syndrome and Related Cardio-metabolic Risk Factors: Dietary Polyphenols

  • REVIEW
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Polycystic ovarian syndrome (PCOS) is a common endocrine disease characterized by ovulatory dysfunction, hyperandrogenism, and polycystic ovarian morphology and causing various reproductive, metabolic, cardiovascular, oncological, and psychological complications. Recent meta-analyses and systemic reviews showed that PCOS increases the risk factor for various cardio-metabolic complications like insulin resistance, type II diabetes mellitus, dyslipidemia, metabolic syndrome, hypertension, and endothelial dysfunction. In addition to these, it was suggested that chronic low-grade inflammation and oxidative stress are the underlying mechanisms of PCOS-mediated metabolic consequences and might trigger cardio-metabolic risk in women with PCOS. At this point, there is substantial evidence to suggest that various non-nutrient food components modulate cardio-metabolic health together with inflammation and oxidative stress.

Recent Findings

Increasing the intake of dietary polyphenols might reduce oxidative stress and inflammation and thus alleviate the risk of metabolic, endothelial, and cardiovascular disorders. Nowadays, there are an increasing number of studies related to the effects of dietary polyphenols on PCOS and its accompanying cardio-metabolic disturbances. Currently, there is a cumulative number of studies connected to the effects of dietary polyphenols on PCOS and accompanying cardio-metabolic disturbances. However, there is a lack of knowledge in combining the probable mechanisms of dietary polyphenols on PCOS and related cardio-metabolic consequences.

Summary

Thus, the effects of dietary polyphenols on PCOS and accompanying cardio-metabolic disturbances need to be discussed and evaluated with underlying mechanisms. Consequently, this review was written to reveal the potential effects of dietary polyphenols on PCOS and related metabolic and cardiovascular risk factors in all their aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •   Of importance •• Of major importance

  1. Palomba S, Santagni S, Falbo A, La Sala GB. Complications and challenges associated with polycystic ovary syndrome: current perspectives. Int J Womens Health. 2015;7:745–63.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stein IF. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol. 1935;29:181–91.

    Article  Google Scholar 

  3. Lim SS, Kakoly NS, Tan JWJ, Fitzgerald G, Bahri Khomami M, Joham AE, et al. Metabolic syndrome in polycystic ovary syndrome: a systematic review, meta-analysis and meta-regression. Obes Rev. 2019;20(2):339–52.

    Article  CAS  PubMed  Google Scholar 

  4. Bates GW, Legro RS. Longterm management of polycystic ovarian syndrome (PCOS). Mol Cell Endocrinol. 2013;373(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  5. Amisi CA. Markers of insulin resistance in polycystic ovary syndrome women: an update. World J Diabetes. 2022;13(3):129–49.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Otaghi M, Azami M, Khorshidi A, Borji M, Tardeh Z. The association between metabolic syndrome and polycystic ovary syndrome: a systematic review and meta-analysis. Diabetes Metab Syndr. 2019;13(2):1481–9.

    Article  PubMed  Google Scholar 

  7. •• Wekker V, van Dammen L, Koning A, Heida KY, Painter RC, Limpens J, et al. Long-term cardiometabolic disease risk in women with PCOS: a systematic review and meta-analysis. Hum Reprod Update. 2020;26(6):942–60. This article reveals long term cariometabolic risk factors (cardiovascular diseases, stroke, myocardial infarction, hypertension, type 2 diabetese mellitus, metabolic syndrome, dyslipidemia) related to PCOS. In this context, 23 cohort studies were included in this systematic review and meta-analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yumiceba V, López-Cortés A, Pérez-Villa A, Yumiseba I, Guerrero S, García-Cárdenas JM, et al. Oncology and pharmacogenomics insights in polycystic ovary syndrome: an integrative analysis. Front Endocrinol (Lausanne). 2020;11: 585130.

    Article  PubMed  Google Scholar 

  9. Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril. 2012;97(1):28-38.e25.

    Article  PubMed  Google Scholar 

  10. Moran LJ, Misso ML, Wild RA, Norman RJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2010;16(4):347–63.

    Article  CAS  PubMed  Google Scholar 

  11. de Groot PC, Dekkers OM, Romijn JA, Dieben SW, Helmerhorst FM. PCOS, coronary heart disease, stroke and the influence of obesity: a systematic review and meta-analysis. Hum Reprod Update. 2011;17(4):495–500.

    Article  PubMed  Google Scholar 

  12. • Rudnicka E, Suchta K, Grymowicz M, Calik-Ksepka A, Smolarczyk K, Duszewska AM, et al. Chronic low grade inflammation in pathogenesis of PCOS. Int J Mol Sci. 2021;22(7). This review article explains in detail the effects of chronic low-grade inflammation, which is one of the main mechanisms underlying PCOS and its associated cardiometabolic risk factors.

  13. Rudnicka E, Kunicki M, Suchta K, Machura P, Grymowicz M, Smolarczyk R. Inflammatory markers in women with polycystic ovary syndrome. Biomed Res Int. 2020;2020:4092470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Videla LA, Fernández V. Biochemical aspects of cellular oxidative stress. Arch Biol Med Exp. 1988;21(1):85–92.

    CAS  PubMed  Google Scholar 

  16. Szczuko M, Kikut J, Szczuko U, Szydłowska I, Nawrocka-Rutkowska J, Ziętek M, et al. Nutrition strategy and life style in polycystic ovary syndrome-narrative review. Nutrients. 2021;13(7).

  17. Mizgier M, Jarząbek-Bielecka G, Wendland N, Jodłowska-Siewert E, Nowicki M, Brożek A, et al. Relation between inflammation, oxidative stress, and macronutrient intakes in normal and excessive body weight adolescent girls with clinical features of polycystic ovary syndrome. Nutrients. 2021;13(3).

  18. Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM, et al. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr. 2015;114(7):999–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. González-Castejón M, Rodriguez-Casado A. Dietary phytochemicals and their potential effects on obesity: a review. Pharmacol Res. 2011;64(5):438–55.

    Article  PubMed  Google Scholar 

  20. • Rudrapal M, Khairnar SJ, Khan J, Dukhyil AB, Ansari MA, Alomary MN, et al. Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects, antioxidant potentials and mechanism(s) of action. Front Pharmacol. 2022;13:806470. This article explains that the effects of dietary polyphenols on oxidative stress, one of the underlying mechanisms in PCOS, and related cardio-metabolic outcomes.

  21. • Sun P, Zhao L, Zhang N, Zhou J, Zhang L, Wu W, et al. Bioactivity of dietary polyphenols: the role in LDL-C lowering. Foods. 2021;10(11). This article reveals the effects of bioactive dietary polyphenols on LDL-C lowering. These effects demonstrated the preventive role of dietary polyphenols against hyperlipidemia/dyslipidemia.

  22. Banaszewska B, Wrotyńska-Barczyńska J, Spaczynski RZ, Pawelczyk L, Duleba AJ. Effects of resveratrol on polycystic ovary syndrome: a double-blind, randomized, placebo-controlled Trial. J Clin Endocrinol Metab. 2016;101(11):4322–8.

    Article  CAS  PubMed  Google Scholar 

  23. Mirabelli M, Chiefari E, Arcidiacono B, Corigliano DM, Brunetti FS, Maggisano V, et al. Mediterranean diet nutrients to turn the tide against insulin resistance and related diseases. Nutrients. 2020;12(4).

  24. Chen M, He C, Zhu K, Chen Z, Meng Z, Jiang X, et al. Resveratrol ameliorates polycystic ovary syndrome via transzonal projections within oocyte-granulosa cell communication. Theranostics. 2022;12(2):782–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(6):618–37.

    Article  CAS  PubMed  Google Scholar 

  26. Horejsi R, Möller R, Rackl S, Giuliani A, Freytag U, Crailsheim K, et al. Android subcutaneous adipose tissue topography in lean and obese women suffering from PCOS: comparison with type 2 diabetic women. Am J Phys Anthropol. 2004;124(3):275–81.

    Article  CAS  PubMed  Google Scholar 

  27. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270–84.

    Article  PubMed  Google Scholar 

  28. Torchen LC. Cardiometabolic risk in PCOS: more than a reproductive disorder. Curr Diab Rep. 2017;17(12):137.

    Article  PubMed  PubMed Central  Google Scholar 

  29. González F. Inflammation in polycystic ovary syndrome: underpinning of insulin resistance and ovarian dysfunction. Steroids. 2012;77(4):300–5.

    Article  PubMed  Google Scholar 

  30. Anagnostis P, Tarlatzis BC, Kauffman RP. Polycystic ovarian syndrome (PCOS): long-term metabolic consequences. Metabolism. 2018;86:33–43.

    Article  CAS  PubMed  Google Scholar 

  31. Villa J, Pratley RE. Adipose tissue dysfunction in polycystic ovary syndrome. Curr Diab Rep. 2011;11(3):179–84.

    Article  CAS  PubMed  Google Scholar 

  32. Armanini D, Boscaro M, Bordin L, Sabbadin C. Controversies in the pathogenesis, diagnosis and treatment of PCOS: focus on insulin resistance, inflammation, and hyperandrogenism. Int J Mol Sci. 2022;23(8).

  33. Zhu S, Zhang B, Jiang X, Li Z, Zhao S, Cui L, et al. Metabolic disturbances in non-obese women with polycystic ovary syndrome: a systematic review and meta-analysis. Fertil Steril. 2019;111(1):168–77.

    Article  CAS  PubMed  Google Scholar 

  34. Stepto NK, Cassar S, Joham AE, Hutchison SK, Harrison CL, Goldstein RF, et al. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum Reprod. 2013;28(3):777–84.

    Article  CAS  PubMed  Google Scholar 

  35. Plymate SR, Matej LA, Jones RE, Friedl KE. Inhibition of sex hormone-binding globulin production in the human hepatoma (Hep G2) cell line by insulin and prolactin. J Clin Endocrinol Metab. 1988;67(3):460–4.

    Article  CAS  PubMed  Google Scholar 

  36. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Conway G, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Franks S, Gambineri A, et al. The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. Eur J Endocrinol. 2014;171(4):P1-29.

    Article  CAS  PubMed  Google Scholar 

  38. Rizzo M, Berneis K. Lipid triad or atherogenic lipoprotein phenotype: a role in cardiovascular prevention? J Atheroscler Thromb. 2005;12(5):237–9.

    Article  CAS  PubMed  Google Scholar 

  39. Wang ET, Calderon-Margalit R, Cedars MI, Daviglus ML, Merkin SS, Schreiner PJ, et al. Polycystic ovary syndrome and risk for long-term diabetes and dyslipidemia. Obstet Gynecol. 2011;117(1):6–13.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wild RA, Rizzo M, Clifton S, Carmina E. Lipid levels in polycystic ovary syndrome: systematic review and meta-analysis. Fertil Steril. 2011;95(3):1073–9.e1–11.

  41. Sangaraju SL, Yepez D, Grandes XA, Talanki Manjunatha R, Habib S. Cardio-metabolic disease and polycystic ovarian syndrome (PCOS): a narrative review. Cureus. 2022;14(5): e25076.

    PubMed  PubMed Central  Google Scholar 

  42. Diamanti-Kandarakis E, Papavassiliou AG, Kandarakis SA, Chrousos GP. Pathophysiology and types of dyslipidemia in PCOS. Trends Endocrinol Metab. 2007;18(7):280–5.

    Article  CAS  PubMed  Google Scholar 

  43. Luo X, Yang XM, Cai WY, Chang H, Ma HL, Peng Y, et al. Decreased sex hormone-binding globulin indicated worse biometric, lipid, liver, and renal function parameters in women with polycystic ovary syndrome. Int J Endocrinol. 2020;2020:7580218.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Desmeules A, Couillard C, Tchernof A, Bergeron J, Rankinen T, Leon AS, et al. Post-heparin lipolytic enzyme activities, sex hormones and sex hormone-binding globulin (SHBG) in men and women: The HERITAGE Family Study. Atherosclerosis. 2003;171(2):343–50.

    Article  CAS  PubMed  Google Scholar 

  45. Spałkowska M, Mrozińska S, Gałuszka-Bednarczyk A, Gosztyła K, Przywara A, Guzik J, et al. The PCOS patients differ in lipid profile according to their phenotypes. Exp Clin Endocrinol Diabetes. 2018;126(07):437–44.

    Article  PubMed  Google Scholar 

  46. Pan J-X, Tan Y-J, Wang F-F, Hou N-N, Xiang Y-Q, Zhang J-Y, et al. Aberrant expression and DNA methylation of lipid metabolism genes in PCOS: a new insight into its pathogenesis. Clin Epigenetics. 2018;10(1):1–12.

    Article  Google Scholar 

  47. Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1–40.

    Article  CAS  PubMed  Google Scholar 

  48. Macut D, Bjekić-Macut J, Savić-Radojević A. Dyslipidemia and oxidative stress in PCOS. Polycystic Ovary Syndrome. 2013;40:51–63.

    Article  CAS  Google Scholar 

  49. Sho T, Xu J. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnol Appl Biochem. 2019;66(1):4–13.

    Article  CAS  PubMed  Google Scholar 

  50. Chen MJ, Yang WS, Yang JH, Chen CL, Ho HN, Yang YS. Relationship between androgen levels and blood pressure in young women with polycystic ovary syndrome. Hypertension. 2007;49(6):1442–7.

    Article  CAS  PubMed  Google Scholar 

  51. Diamanti-Kandarakis E, Alexandraki K, Piperi C, Protogerou A, Katsikis I, Paterakis T, et al. Inflammatory and endothelial markers in women with polycystic ovary syndrome. Eur J Clin Invest. 2006;36(10):691–7.

    Article  CAS  PubMed  Google Scholar 

  52. Kelly CJ, Speirs A, Gould GW, Petrie JR, Lyall H, Connell JM. Altered vascular function in young women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2002;87(2):742–6.

    Article  CAS  PubMed  Google Scholar 

  53. Orio F Jr, Palomba S, Cascella T, De Simone B, Di Biase S, Russo T, et al. Early impairment of endothelial structure and function in young normal-weight women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2004;89(9):4588–93.

    Article  CAS  PubMed  Google Scholar 

  54. Carmina E, Orio F, Palomba S, Longo RA, Cascella T, Colao A, et al. Endothelial dysfunction in PCOS: role of obesity and adipose hormones. Am J Med. 2006;119(4):356.e1-6.

    Article  CAS  PubMed  Google Scholar 

  55. Pfieffer ML. Polycystic ovary syndrome: diagnosis and management. Nurse Pract. 2019;44(3):30–5.

    Article  PubMed  Google Scholar 

  56. Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998;56(11):317–33.

    Article  CAS  PubMed  Google Scholar 

  57. Chandrasekara A. Phenolic Acids. In: Melton L, Shahidi F, Varelis P, editors. Encyclopedia of food chemistry. Oxford: Academic Press; 2019. p. 535–45.

    Chapter  Google Scholar 

  58. Martinez KB, Mackert JD, McIntosh MK. Chapter 18 - Polyphenols and intestinal health. In: Watson RR, editor. Nutrition and functional foods for healthy aging: Acad Press. 2017;191–210.

  59. Costain L. Supernutrients handbook: Dorling Kindersley. 2001.

  60. Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr. 2010;30:173–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mihanfar A, Nouri M, Roshangar L, Khadem-Ansari MH. Polyphenols: natural compounds with promising potential in treating polycystic ovary syndrome. Reprod Biol. 2021;21(2): 100500.

    Article  CAS  PubMed  Google Scholar 

  62. Jafari Khorchani M, Zal F, Neisy A. The phytoestrogen, quercetin, in serum, uterus and ovary as a potential treatment for dehydroepiandrosterone-induced polycystic ovary syndrome in the rat. Reprod Fertil Dev. 2020;32(3):313–21.

    Article  CAS  PubMed  Google Scholar 

  63. Mihanfar A, Nouri M, Roshangar L, Khadem-Ansari MH. Therapeutic potential of quercetin in an animal model of PCOS: possible involvement of AMPK/SIRT-1 axis. Eur J Pharmacol. 2021;900: 174062.

    Article  CAS  PubMed  Google Scholar 

  64. Mansour A, Samadi M, Sanginabadi M, Gerami H, Karimi S, Hosseini S, et al. Effect of resveratrol on menstrual cyclicity, hyperandrogenism and metabolic profile in women with PCOS. Clin Nutr. 2021;40(6):4106–12.

    Article  CAS  PubMed  Google Scholar 

  65. Rajan RK, M SS, Balaji B. Soy isoflavones exert beneficial effects on letrozole-induced rat polycystic ovary syndrome (PCOS) model through anti-androgenic mechanism. Pharm Biol. 2017;55(1):242–51.

  66. Abedini M, Ghasemi-Tehrani H, Tarrahi MJ, Amani R. The effect of concentrated pomegranate juice consumption on risk factors of cardiovascular diseases in women with polycystic ovary syndrome: a randomized controlled trial. Phytother Res. 2021;35(1):442–51.

    Article  CAS  PubMed  Google Scholar 

  67. Ibrahim MAA, Sadek MT, Sharaf Eldin HEM. Role of pomegranate extract in restoring endometrial androgen receptor expression, proliferation, and pinopodes in a rat model of polycystic ovary syndrome. Morphologie. 2022;106(354):145–54.

    Article  CAS  PubMed  Google Scholar 

  68. Mazloom B, Amin M, Edalatmanesh M, Hosseini SE, Hosseini E. The effect of gallic acid on pituitary-ovary axis and oxidative stress in rat model of polycystic ovary syndrome. 2017;3:41–7.

    Google Scholar 

  69. Mazloom BF, Edalatmanesh MA, Hosseini SE. Gallic acid reduces inflammatory cytokines and markers of oxidative damage in a rat model of estradiol-induced polycystic ovary. Comp Clin Pathol. 2019;28(5):1281–6.

    Article  CAS  Google Scholar 

  70. Abuelezz NZ, Shabana ME, Abdel-Mageed HM, Rashed L, Morcos GNB. Nanocurcumin alleviates insulin resistance and pancreatic deficits in polycystic ovary syndrome rats: Insights on PI3K/AkT/mTOR and TNF-α modulations. Life Sci. 2020;256: 118003.

    Article  CAS  PubMed  Google Scholar 

  71. Mohammadi S, Karimzadeh Bardei L, Hojati V, Ghorbani AG, Nabiuni M. Anti-inflammatory effects of curcumin on insulin resistance index, levels of interleukin-6, C-reactive protein, and liver histology in polycystic ovary syndrome-induced rats. Cell J. 2017;19(3):425–33.

    PubMed  PubMed Central  Google Scholar 

  72. Mahmoud AA, Elfiky AM, Abo-Zeid FS. The anti-androgenic effect of quercetin on hyperandrogenism and ovarian dysfunction induced in a dehydroepiandrosterone rat model of polycystic ovary syndrome. Steroids. 2022;177: 108936.

    Article  CAS  PubMed  Google Scholar 

  73. Shah KN, Patel SS. Phosphatidylinositide 3-kinase inhibition: a new potential target for the treatment of polycystic ovarian syndrome. Pharm Biol. 2016;54(6):975–83.

    Article  CAS  PubMed  Google Scholar 

  74. Zheng S, Chen Y, Ma M, Li M. Mechanism of quercetin on the improvement of ovulation disorder and regulation of ovarian CNP/NPR2 in PCOS model rats. J Formos Med Assoc. 2022;121(6):1081–92.

    Article  CAS  PubMed  Google Scholar 

  75. Jahan S, Abid A, Khalid S, Afsar T, Qurat Ul A, Shaheen G, et al. Therapeutic potentials of Quercetin in management of polycystic ovarian syndrome using Letrozole induced rat model: a histological and a biochemical study. J Ovarian Res. 2018;11(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wang Z, Zhai D, Zhang D, Bai L, Yao R, Yu J, et al. Quercetin decreases insulin resistance in a polycystic ovary syndrome rat model by improving inflammatory microenvironment. Reprod Sci. 2017;24(5):682–90.

    Article  CAS  PubMed  Google Scholar 

  77. Neisy A, Zal F, Seghatoleslam A, Alaee S. Amelioration by quercetin of insulin resistance and uterine GLUT4 and ERα gene expression in rats with polycystic ovary syndrome (PCOS). Reprod Fertil Dev. 2019;31(2):315–23.

    Article  CAS  PubMed  Google Scholar 

  78. Olaniyan OT, Bamidele O, Adetunji CO, Priscilla B, Femi A, Ayobami D, et al. Quercetin modulates granulosa cell mRNA androgen receptor gene expression in dehydroepiandrosterone-induced polycystic ovary in Wistar rats via metabolic and hormonal pathways. J Basic Clin Physiol Pharmacol. 2020;31(4).

  79. Hu T, Yuan X, Ye R, Zhou H, Lin J, Zhang C, et al. Brown adipose tissue activation by rutin ameliorates polycystic ovary syndrome in rat. J Nutr Biochem. 2017;47:21–8.

    Article  CAS  PubMed  Google Scholar 

  80. Jahan S, Munir F, Razak S, Mehboob A, Ain QU, Ullah H, et al. Ameliorative effects of rutin against metabolic, biochemical and hormonal disturbances in polycystic ovary syndrome in rats. J Ovarian Res. 2016;9(1):86.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mihanfar A, Nouri M, Roshangar L, Khadem-Ansari MH. Ameliorative effects of fisetin in letrozole-induced rat model of polycystic ovary syndrome. J Steroid Biochem Mol Biol. 2021;213: 105954.

    Article  CAS  PubMed  Google Scholar 

  82. Zhou Y, Lan H, Dong Z, Li W, Qian B, Zeng Z, et al. Rhamnocitrin attenuates ovarian fibrosis in rats with letrozole-induced experimental polycystic ovary syndrome. Oxid Med Cell Longevity. 2022.

  83. Manzar N, Khan SA, Fatima N, Nisa MU, Ahmad MH, Afzal MI, et al. Exploring the prophylactic role of soy isoflavones against polycystic ovarian syndrome. Food Sci Nutr. 2021;9(9):4738–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Luo M, Zheng LW, Wang YS, Huang JC, Yang ZQ, Yue ZP, et al. Genistein exhibits therapeutic potential for PCOS mice via the ER-Nrf2-Foxo1-ROS pathway. Food Funct. 2021;12(18):8800–11.

    Article  CAS  PubMed  Google Scholar 

  85. Ma X, Li X, Ma L, Chen Y, He S. Soy isoflavones alleviate polycystic ovary syndrome in rats by regulating NF-κB signaling pathway. Bioengineered. 2021;12(1):7215–23.

    Article  PubMed  Google Scholar 

  86. Alivandi Farkhad S, Khazali H. Therapeutic effects of isoflavone-aglycone fraction from soybean (Glycine max L. Merrill) in rats with estradiol valerate-induced polycystic ovary syndrome as an inflammatory state. Gynecol Endocrinol. 2019;35(12):1078–83.

  87. Ramadass V, Vaiyapuri T, Tergaonkar V. Small molecule NF-κB pathway inhibitors in clinic. Int J Mol Sci. 2020;21(14).

  88. Rajaei S, Alihemmati Ph DA, Abedelahi Ph DA. Antioxidant effect of genistein on ovarian tissue morphology, oxidant and antioxidant activity in rats with induced polycystic ovary syndrome. Int J Reprod Biomed. 2019;17(1):11–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hong Y, Yin Y, Tan Y, Hong K, Zhou H. The flavanone, naringenin, modifies antioxidant and steroidogenic enzyme activity in a rat model of letrozole-induced polycystic ovary syndrome. Med Sci Monit. 2019;25:395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yi Y, Liu J, Xu W. Naringenin and morin reduces insulin resistance and endometrial hyperplasia in the rat model of polycystic ovarian syndrome through enhancement of inflammation and autophagic apoptosis. Acta Biochim Pol. 2022;69(1):91–100.

    Google Scholar 

  91. Peng F, Hu Y, Peng S, Zeng N, Shi L. Apigenin exerts protective effect and restores ovarian function in dehydroepiandrosterone induced polycystic ovary syndrome rats: a biochemical and histological analysis. Ann Med. 2022;54(1):578–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Darabi P, Khazali H, Mehrabani NM. Therapeutic potentials of the natural plant flavonoid apigenin in polycystic ovary syndrome in rat model: via modulation of pro-inflammatory cytokines and antioxidant activity. Gynecol Endocrinol. 2020;36(7):582–7.

    Article  CAS  PubMed  Google Scholar 

  93. Huang Y, Zhang X. Luteolin alleviates polycystic ovary syndrome in rats by resolving insulin resistance and oxidative stress. Am J Physiol Endocrinol Metab. 2021;320(6):E1085–92.

    Article  CAS  PubMed  Google Scholar 

  94. Ghafurniyan H, Azarnia M, Nabiuni M, Karimzadeh L. The effect of green tea extract on reproductive improvement in estradiol valerate-induced polycystic ovarian syndrome in rat. Iran J Pharm Res. 2015;14(4):1215–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ashkar F, Eftekhari MH, Tanideh N, Koohpeyma F, Mokhtari M, Irajie C, et al. Effect of hydroalcoholic extract of Berberis integerrima and resveratrol on ovarian morphology and biochemical parameters in Letrozole-induced polycystic ovary syndrome rat model: an experimental study. Int J Reprod Biomed. 2020;18(8):637–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Moshfegh F, Balanejad SZ, Shahrokhabady K, Attaranzadeh A. Crocus sativus (saffron) petals extract and its active ingredient, anthocyanin improves ovarian dysfunction, regulation of inflammatory genes and antioxidant factors in testosterone-induced PCOS mice. J Ethnopharmacol. 2022;282: 114594.

    Article  CAS  PubMed  Google Scholar 

  97. Yuan B, Luo S, Feng L, Wang J, Mao J, Luo B. Resveratrol regulates the inflammation and oxidative stress of granulosa cells in PCOS via targeting TLR2. J Bioenerg Biomembr. 2022.

  98. Yarmolinskaya M, Bulgakova O, Abashova E, Borodina V, Tral T. The effectiveness of resveratrol in treatment of PCOS on the basis of experimental model in rats. Gynecol Endocrinol. 2021;37(sup1):54–7.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang N, Zhuang L, Gai S, Shan Y, Wang S, Li F, et al. Beneficial phytoestrogenic effects of resveratrol on polycystic ovary syndromein rat model. Gynecol Endocrinol. 2021;37(4):337–41.

    Article  CAS  PubMed  Google Scholar 

  100. Wang D, Wang T, Wang R, Zhang X, Wang L, Xiang Z, et al. Suppression of p66Shc prevents hyperandrogenism-induced ovarian oxidative stress and fibrosis. J Transl Med. 2020;18(1):84.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ghowsi M, Khazali H, Sisakhtnezhad S. The effect of resveratrol on oxidative stress in the liver and serum of a rat model of polycystic ovary syndrome: an experimental study. Int J Reprod Biomed. 2018;16(3):149–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Liang A, Huang L, Liu H, He W, Lei X, Li M, et al. Resveratrol improves follicular development of PCOS rats by regulating the glycolytic pathway. Mol Nutr Food Res. 2021;65(24): e2100457.

    Article  PubMed  Google Scholar 

  103. Furat Rencber S, Kurnaz Ozbek S, Eraldemır C, Sezer Z, Kum T, Ceylan S, et al. Effect of resveratrol and metformin on ovarian reserve and ultrastructure in PCOS: an experimental study. J Ovarian Res. 2018;11(1):55.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ergenoglu M, Yildirim N, Yildirim AG, Yeniel O, Erbas O, Yavasoglu A, et al. Effects of resveratrol on ovarian morphology, plasma anti-mullerian hormone, IGF-1 levels, and oxidative stress parameters in a rat model of polycystic ovary syndrome. Reprod Sci. 2015;22(8):942–7.

    Article  CAS  PubMed  Google Scholar 

  105. Simental-Mendía LE, Shah N, Sathyapalan T, Majeed M, Orekhov AN, Jamialahmadi T, et al. Effect of curcumin on glycaemic and lipid parameters in polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Reprod Sci. 2021.

  106. Abdelazeem B, Abbas KS, Shehata J, Baral N, Banour S, Hassan M. The effects of curcumin as dietary supplement for patients with polycystic ovary syndrome: an updated systematic review and meta-analysis of randomized clinical trials. Phytother Res. 2022;36(1):22–32.

    Article  CAS  PubMed  Google Scholar 

  107. Sohaei S, Amani R, Tarrahi MJ, Ghasemi-Tehrani H. The effects of curcumin supplementation on glycemic status, lipid profile and hs-CRP levels in overweight/obese women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled clinical trial. Complement Ther Med. 2019;47: 102201.

    Article  PubMed  Google Scholar 

  108. Heshmati J, Golab F, Morvaridzadeh M, Potter E, Akbari-Fakhrabadi M, Farsi F, et al. The effects of curcumin supplementation on oxidative stress, sirtuin-1 and peroxisome proliferator activated receptor γ coactivator 1α gene expression in polycystic ovarian syndrome (PCOS) patients: a randomized placebo-controlled clinical trial. Diabetes Metab Syndr. 2020;14(2):77–82.

    Article  PubMed  Google Scholar 

  109. Jamilian M, Foroozanfard F, Kavossian E, Aghadavod E, Shafabakhsh R, Hoseini A, et al. Effects of curcumin on body weight, glycemic control and serum lipids in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Clin Nutr ESPEN. 2020;36:128–33.

    Article  PubMed  Google Scholar 

  110. Heshmati J, Moini A, Sepidarkish M, Morvaridzadeh M, Salehi M, Palmowski A, et al. Effects of curcumin supplementation on blood glucose, insulin resistance and androgens in patients with polycystic ovary syndrome: a randomized double-blind placebo-controlled clinical trial. Phytomedicine. 2021;80: 153395.

    Article  CAS  PubMed  Google Scholar 

  111. Sohrevardi SM, Heydari B, Azarpazhooh MR, Teymourzadeh M, Simental-Mendía LE, Atkin SL, et al. Therapeutic effect of curcumin in women with polycystic ovary syndrome receiving metformin: a randomized controlled trial. Adv Exp Med Biol. 2021;1308:109–17.

    Article  CAS  PubMed  Google Scholar 

  112. Khorshidi M, Moini A, Alipoor E, Rezvan N, Gorgani-Firuzjaee S, Yaseri M, et al. The effects of quercetin supplementation on metabolic and hormonal parameters as well as plasma concentration and gene expression of resistin in overweight or obese women with polycystic ovary syndrome. Phytother Res. 2018;32(11):2282–9.

    Article  CAS  PubMed  Google Scholar 

  113. Rezvan N, Moini A, Janani L, Mohammad K, Saedisomeolia A, Nourbakhsh M, et al. Effects of quercetin on adiponectin-mediated insulin sensitivity in polycystic ovary syndrome: a randomized placebo-controlled double-blind clinical trial. Horm Metab Res. 2017;49(2):115–21.

    CAS  PubMed  Google Scholar 

  114. Jamilian M, Asemi Z. The effects of soy isoflavones on metabolic status of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2016;101(9):3386–94.

    Article  CAS  PubMed  Google Scholar 

  115. Li W, Hu H, Zou G, Ma Z, Liu J, Li F. Therapeutic effects of puerarin on polycystic ovary syndrome: a randomized trial in Chinese women. Medicine (Baltimore). 2021;100(21): e26049.

    Article  CAS  PubMed  Google Scholar 

  116. Shojaei-Zarghani S, Rafraf M. Resveratrol and markers of polycystic ovary syndrome: a systematic review of animal and clinical studies. Reprod Sci. 2021.

  117. Karimi A, Tutunchi H, Naeini F, Vajdi M, Mobasseri M, Najafipour F. The therapeutic effects and mechanisms of action of resveratrol on polycystic ovary syndrome: a comprehensive systematic review of clinical, animal and in vitro studies. Clin Exp Pharmacol Physiol. 2022;49(9):935–49.

    Article  CAS  PubMed  Google Scholar 

  118. Iervolino M, Lepore E, Forte G, Laganà AS, Buzzaccarini G, Unfer V. Natural molecules in the management of polycystic ovary syndrome (PCOS): an analytical review. Nutrients. 2021;13(5).

  119. Hashemi Taheri AP, Moradi B, Radmard AR, Sanginabadi M, Qorbani M, Mohajeri-Tehrani MR, et al. Effect of resveratrol administration on ovarian morphology, determined by transvaginal ultrasound for the women with polycystic ovary syndrome (PCOS). Br J Nutr. 2021:1–6.

  120. Bahramrezaie M, Amidi F, Aleyasin A, Saremi A, Aghahoseini M, Brenjian S, et al. Effects of resveratrol on VEGF & HIF1 genes expression in granulosa cells in the angiogenesis pathway and laboratory parameters of polycystic ovary syndrome: a triple-blind randomized clinical trial. J Assist Reprod Genet. 2019;36(8):1701–12.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Brenjian S, Moini A, Yamini N, Kashani L, Faridmojtahedi M, Bahramrezaie M, et al. Resveratrol treatment in patients with polycystic ovary syndrome decreased pro-inflammatory and endoplasmic reticulum stress markers. Am J Reprod Immunol. 2020;83(1): e13186.

    Article  PubMed  Google Scholar 

  122. Nowak DA, Snyder DC, Brown AJ, Demark-Wahnefried W. The effect of flaxseed supplementation on hormonal levels associated with polycystic ovarian syndrome: a case study. Curr Top Nutraceutical Res. 2007;5(4):177–81.

    PubMed  PubMed Central  Google Scholar 

  123. Mohammadi S, Kayedpoor P, Karimzadeh-Bardei L, Nabiuni M. The effect of curcumin on TNF-α, IL-6 and CRP expression in a model of polycystic ovary syndrome as an inflammation state. J Reprod Infertil. 2017;18(4):352–60.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

E.U. contributed significantly to the design, screening of the articles, and writing of the manuscript. A.A.P. contributed significantly to the work’s conception, design, and critical writing and reviewed the manuscript. Both authors have read and approved the final manuscript.

Corresponding author

Correspondence to Aylin Acikgoz Pinar.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulug, E., Pinar, A.A. A New Approach to Polycystic Ovary Syndrome and Related Cardio-metabolic Risk Factors: Dietary Polyphenols. Curr Nutr Rep 12, 508–526 (2023). https://doi.org/10.1007/s13668-023-00488-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-023-00488-7

Keywords

Navigation