Skip to main content

Advertisement

Log in

Environment, Lifestyle, and Female Infertility

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Lifestyle factors, which include the practices we adopt in our daily life, have a significant role in shaping our overall health. These lifestyle choices are mainly centered on personal preferences and our surrounding social environment. In addition to lifestyle factors, we continuously interact with our environment, which impacts physiology. Several factors have been claimed to affect women’s fertility; lifestyle-related factors, in particular, have received great attention in the last decade. Due to societal and professional pressure, childbearing age in women has gradually shifted to the 30s. Delayed age of childbearing along with modern lifestyle offers a wider window of opportunity for various lifestyle and genetic perturbations to penetrate to affect fertility. While clinical studies have strengthened a direct correlation between lifestyle, environment, and female reproductive health; experimental studies on animal models have investigated their mechanism of action. In most instances, these factors target the neuroendocrine pathways, resulting in metabolic derangements. This review aims to dissect the plausible interconnection of lifestyle and environmental factors with various neuroendocrine pathways and to discuss how it can affect the female physiology in the long-term, resulting in reproductive incompetence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wood JW. Fecundity and natural fertility in humans. Oxf Rev Reprod Biol. 1989;11:61–109.

    CAS  PubMed  Google Scholar 

  2. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13:37.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dees L, Skelley CW. Effects of ethanol during the onset of female puberty. Neuroendocrinology. 1990;51:64–9.

    Article  CAS  PubMed  Google Scholar 

  4. Fuxe K, Andersson K, Eneroth P, Härfstrand A, Agnati LF. Neuroendocrine actions of nicotine and of exposure to cigarette smoke: medical implications. Psychoneuroendocrinology. 1989;14:19–41.

    Article  CAS  PubMed  Google Scholar 

  5. Painter RC, Roseboom TJ, de Rooij SR. Long-term effects of prenatal stress and glucocorticoid exposure. Birth Defects Res Part C Embryo Today Rev. 2012;96:315–24.

    Article  CAS  Google Scholar 

  6. Nagata C, Kabuto M, Shimizu H. Association of coffee, green tea, and caffeine intakes with serum concentrations of estradiol and sex hormone-binding globulin in premenopausal Japanese women. Nutr Cancer.1998;30:21–4.

  7. Regan L, Owen EJ, Jacobs HS. Hypersecretion of luteinising hormone, infertility, and miscarriage. Lancet. 1990;336:1141–4.

    Article  CAS  PubMed  Google Scholar 

  8. Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139:685–95.

    Article  CAS  PubMed  Google Scholar 

  9. Temel S, van Voorst SF, Jack BW, Denktaş S, Steegers EAP. Evidence-based preconceptional lifestyle interventions. Epidemiol Rev. 2013;36:19–30.

    Article  PubMed  Google Scholar 

  10. Lobaccaro JMA, Gallot D, Lumbroso S, Mouzat K. Liver X Receptors and female reproduction: when cholesterol meets fertility! J Endocrinol Investig. 2013;36:55–60.

    CAS  Google Scholar 

  11. Dupont J, Scaramuzzi RJ. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J. 2016;473:1483–501.

    Article  CAS  PubMed  Google Scholar 

  12. Haus E, Smolensky M. Biological clocks and shift work: circadian dysregulation and potential long-term effects. Cancer Causes Control. 2006;17:489–500.

    Article  PubMed  Google Scholar 

  13. Waldhauser F, Weiszenbacher G, Tatzer E, Gisinger B, Waldhauser M, Schemper M, et al. Alterations in nocturnal serum melatonin levels in humans with growth and aging. J Clin Endocrinol Metab. 1988;66:648–52. https://doi.org/10.1210/jcem-66-3-648.

    Article  CAS  PubMed  Google Scholar 

  14. Kloss JD, Nash CO. Women’s sleep through the lifespan. Women’s Heal. Psychol. New York: Wiley; 2013.

    Google Scholar 

  15. Park B, McPartland JM, Glass M. Cannabis, cannabinoids and reproduction. Prostaglandins Leukot Essent Fat Acids. 2004;70:189–97.

    Article  CAS  Google Scholar 

  16. Brents LK. Focus: sex and gender health: marijuana, the endocannabinoid system and the female reproductive system. Yale J Biol Med. 2016;89:175.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ding R, Jin Y, Liu X, Zhu Z, Zhang Y, Wang T, et al. Characteristics of DNA methylation changes induced by traffic-related air pollution. Mutat Res Toxicol Environ Mutagen. 2016;796:46–53.

    Article  CAS  Google Scholar 

  18. Hart RJ. Physiological aspects of female fertility: role of the environment, modern lifestyle, and genetics. Physiol Rev. 2016;96:873–909.

    Article  CAS  PubMed  Google Scholar 

  19. Lim J, Nakamura BN, Mohar I, Kavanagh TJ, Luderer U. Glutamate cysteine ligase modifier subunit (Gclm) null mice have increased ovarian oxidative stress and accelerated age-related ovarian failure. Endocrinology. 2015;156:3329–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsamou M, Vrijens K, Madhloum N, Lefebvre W, Vanpoucke C, Nawrot TS. Air pollution-induced placental epigenetic alterations in early life: a candidate miRNA approach. Epigenetics. 2018;13:135–46.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li J, Wang H, Hao J-H, Chen Y-H, Liu L, Yu Z, et al. Maternal serum lead level during pregnancy is positively correlated with risk of preterm birth in a Chinese population. Environ Pollut. 2017;227:484–9.

    Article  CAS  PubMed  Google Scholar 

  22. Lacasaña M, Vazquez-Grameix H, Borja-Aburto VH, Blanco-Muñoz J, Romieu I, Aguilar-Garduño C, et al. Maternal and paternal occupational exposure to agricultural work and the risk of anencephaly. Occup Environ Med. 2006;63:649–56.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mishra B, Ripperdan R, Ortiz L, Luderer U. Very low doses of heavy oxygen ion radiation induce premature ovarian failure. Reproduction. 2017;154:123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Deyhoul N, Mohamaddoost T, Hosseini M. Infertility-related risk factors: a systematic review. Int J Womens Heal Reprod Sci. 2017;5:24–9.

    Article  Google Scholar 

  25. Tremellen K, Pearce K. Nutrition, fertility, and human reproductive function. CRC Press; 2015.

  26. Chabrolle C, Tosca L, Dupont J. Regulation of adiponectin and its receptors in rat ovary by human chorionic gonadotrophin treatment and potential involvement of adiponectin in granulosa cell steroidogenesis. Reproduction. 2007;133:719–31.

    Article  CAS  PubMed  Google Scholar 

  27. Chavarro JE, Gaskins AJ, Afeiche MC. Nutrition and ovulatory function. Nutr Fertil Hum Reprod Funct Kelt Tremellen, Karma Pearce, editors. CRC Press;2015:1–26.

  28. Treasure J, Claudino AM, Zucker N. Eating disorders. The Lancet. 2010;375(9714):583–93.

  29. Wade GN, Schneider JE, Li HY. Control of fertility by metabolic cues. Am J Physiol Metab. 1996;270:E1–19.

    CAS  Google Scholar 

  30. Vigersky RA, Andersen AE, Thompson RH, Loriaux DL. Hypothalamic dysfunction in secondary amenorrhea associated with simple weight loss. N Engl J Med. 1977;297:1141–5.

    Article  CAS  PubMed  Google Scholar 

  31. Soliman A, Sanctis V, Elalaily R. Nutrition and pubertal development. Indian J Endocrinol Metab. 2014;18:39. https://doi.org/10.4103/2230-8210.145073.

    Article  Google Scholar 

  32. Chen TY, Stott P, Athorn RZ, Bouwman EG, Langendijk P. Undernutrition during early follicle development has irreversible effects on ovulation rate and embryos. Reprod Fertil Dev. 2012;24:886–92.

    Article  CAS  PubMed  Google Scholar 

  33. Legro RS, Dodson WC, Kris-Etherton PM, Kunselman AR, Stetter CM, Williams NI, et al. Randomized controlled trial of preconception interventions in infertile women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2015;100:4048–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schliep KC, Mumford SL, Hammoud AO, Stanford JB, Kissell KA, Sjaarda LA, et al. Luteal phase deficiency in regularly menstruating women: prevalence and overlap in identification based on clinical and biochemical diagnostic criteria. J Clin Endocrinol Metab. 2014;99:E1007–14.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Christian P, Mullany LC, Hurley KM, Katz J, Black RE. Nutrition and maternal, neonatal, and child health. Semin. Perinatol., vol. 39. Elsevier; 2015. p. 361–72.

  36. Champ M, Hoebler C. Functional food for pregnant, lactating women and in perinatal nutrition: a role for dietary fibres? Curr Opin Clin Nutr Metab Care. 2009;12:565–74.

    Article  CAS  PubMed  Google Scholar 

  37. Twigt JM, Bolhuis MEC, Steegers EAP, Hammiche F, Van Inzen WG, Laven JSE, et al. The preconception diet is associated with the chance of ongoing pregnancy in women undergoing IVF/ICSI treatment. Hum Reprod. 2012;27:2526–31.

    Article  CAS  PubMed  Google Scholar 

  38. Haram K, Hervig T, Ulvik RJ. Hemoglobin, iron deficiency and anemia in pregnant women. Diagnostic aspects. Tidsskr Den Nor Laegeforening Tidsskr Prakt Med Ny Raekke. 1997;117:962–6.

    CAS  Google Scholar 

  39. Kavle JA, Stoltzfus RJ, Witter F, Tielsch JM, Khalfan SS, Caulfield LE. Association between anaemia during pregnancy and blood loss at and after delivery among women with vaginal births in Pemba Island, Zanzibar, Tanzania. J Health Popul Nutr. 2008;26:232.

    PubMed  PubMed Central  Google Scholar 

  40. Han Z, Lutsiv O, Mulla S, McDonald SD. Maternal height and the risk of preterm birth and low birth weight: a systematic review and meta-analyses. J Obstet Gynaecol Can. 2012;34:721–46.

    Article  PubMed  Google Scholar 

  41. Parker SE, Werler MM, Shaw GM, Anderka M, Yazdy MM, Study NBDP. Dietary glycemic index and the risk of birth defects. Am J Epidemiol. 2012;176:1110–20.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schoeller EL, Schon S, Moley KH. The effects of type 1 diabetes on the hypothalamic, pituitary and testes axis. Cell Tissue Res. 2012;349:839–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raucci R, Rusolo F, Sharma A, Colonna G, Castello G, Costantini S. Functional and structural features of adipokine family. Cytokine. 2013;61:1–14.

    Article  CAS  PubMed  Google Scholar 

  44. Hausman GJ, Barb CR, Lents CA. Leptin and reproductive function. Biochimie. 2012;94:2075–81.

    Article  CAS  PubMed  Google Scholar 

  45. Čikoš Š. Adiponectin and its receptors in preimplantation embryo development. Vitam. Horm., vol. 90. Elsevier; 2012. p. 211–38.

  46. Hara K, Yonezawa K, Weng Q-P, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 1998;273:14484–94.

    Article  CAS  PubMed  Google Scholar 

  47. Dars S, Sayed K, Yousufzai Z. Relationship of menstrual irregularities to BMI and nutritional status in adolescent girls. Pakistan J Med Sci. 2014;30:141.

    Google Scholar 

  48. Todd AS, Street SJ, Ziviani J, Byrne NM, Hills AP. Overweight and obese adolescent girls: the importance of promoting sensible eating and activity behaviors from the start of the adolescent period. Int J Environ Res Public Health. 2015;12:2306–29. https://doi.org/10.3390/ijerph120202306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dağ ZÖ, Dilbaz B. Impact of obesity on infertility in women. J Turkish Ger Gynecol Assoc. 2015;16:111.

    Article  Google Scholar 

  50. Grodstein F, Goldman MB, Cramer DW. Body mass index and ovulatory infertility. Epidemiology. 1994;5:247–50.

  51. Silvestris E, de Pergola G, Rosania R, Loverro G. Obesity as disruptor of the female fertility. Reprod Biol Endocrinol. 2018;16:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kirchengast S, Huber J. Body composition characteristics and fat distribution patterns in young infertile women. Fertil Steril. 2004;81:539–44.

    Article  PubMed  Google Scholar 

  53. Pettigrew R, Hamilton-Fairley D. Obsesity and female reproductive function. Br Med Bull. 1997;53:341–58.

    Article  CAS  PubMed  Google Scholar 

  54. Pelusi C, Pasquali R. Polycystic ovary syndrome in adolescents. Treat Endocrinol. 2003;2:215–30.

    Article  PubMed  Google Scholar 

  55. Zaadstra BM, Seidell JC, Pa VN, te Velde ER, Habbema JD, Vrieswijk B, et al. Fat and female fecundity: prospective study of effect of body fat distribution on conception rates. Bmj. 1993;306:484–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Poretsky L. The insulin-related ovarian regulatory system in health and disease. Endocr Rev. 1999;20:535–82.

    Article  CAS  PubMed  Google Scholar 

  57. Kabiru W, Raynor BD. Obstetric outcomes associated with increase in BMI category during pregnancy. Am J Obstet Gynecol. 2004;191:928–32.

    Article  PubMed  Google Scholar 

  58. Cedergren MI. Maternal morbid obesity and the risk of adverse pregnancy outcome. Obstet Gynecol. 2004;103:219–24.

    Article  PubMed  Google Scholar 

  59. Clark AM, Ledger W, Galletly C, Tomlinson L, Blaney F, Wang X, et al. Weight loss results in significant improvement in pregnancy and ovulation rates in anovulatory obese women. Hum Reprod. 1995;10:2705–12.

    Article  CAS  PubMed  Google Scholar 

  60. Crosignani PG, Vegetti W, Colombo M, Ragni G. Resumption of fertility with diet in overweight women. Reprod BioMed Online. 2002;5:60–4.

    Article  PubMed  Google Scholar 

  61. Bellver J, Busso C, Pellicer A, Remohí J, Simón C. Obesity and assisted reproductive technology outcomes. Reprod BioMed Online. 2006;12:562–8.

    Article  PubMed  Google Scholar 

  62. Fedorcsák P, Dale PO, Storeng R, Ertzeid G, Bjercke S, Oldereid N, et al. Impact of overweight and underweight on assisted reproduction treatment. Hum Reprod. 2004;19:2523–8.

    Article  PubMed  Google Scholar 

  63. Mitchell M, Armstrong DT, Robker RL, Norman RJ. Adipokines: implications for female fertility and obesity. Reproduction. 2005;130:583–97.

    Article  CAS  PubMed  Google Scholar 

  64. Pasquali R. Obesity and androgens: facts and perspectives. Fertil Steril. 2006;85:1319–40.

    Article  CAS  PubMed  Google Scholar 

  65. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89(6):2548–56.

  66. Dahlgren E, Landin K, Krotkiewski M, Holm G, Janson PO. Effects of two antiandrogen treatments on hirsutism and insulin sensitivity in women with polycystic ovary syndrome. Hum Reprod. 1998;13:2706–11.

    Article  CAS  PubMed  Google Scholar 

  67. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science (80- ). 1995;269:543–6.

    Article  CAS  Google Scholar 

  68. SWERDLOFF RS, PETERSON M, VERA A, Batt RAL, HEBER D, BRAY GA. The hypothalamic-pituitary axis in genetically obese (ob/ob) mice: response to luteinizing hormone-releasing hormone. Endocrinology. 1978;103:542–7.

    Article  CAS  PubMed  Google Scholar 

  69. Agarwal SK, Vogel K, Weitsman SR, Magoffin DA. Leptin antagonizes the insulin-like growth factor-I augmentation of steroidogenesis in granulosa and theca cells of the human ovary. J Clin Endocrinol Metab. 1999;84:1072–6.

    CAS  PubMed  Google Scholar 

  70. Pasquali R, Vicennati V. Activity of the hypothalamic–pituitary–adrenal axis in different obesity phenotypes. Int J Obes. 2000;24:S47–9.

    Article  CAS  Google Scholar 

  71. Harrison A, Sullivan S, Tchanturia K, Treasure J. Emotional functioning in eating disorders: attentional bias, emotion recognition and emotion regulation. Psychol Med. 2010;40:1887–97.

    Article  CAS  PubMed  Google Scholar 

  72. Sharan P, Sundar AS. Eating disorders in women. Indian J Psychiatry. 2015;57:S286.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Resch M, Nagy G, Pintear J, Szendei G, Haaasz P. Eating disorders and depression in Hungarian women with menstrual disorders and infertility. J Psychosom Obstet Gynecol. 1999;20:152–7.

    Article  CAS  Google Scholar 

  74. Sollid CP, Wisborg K, Hjort J, Secher NJ. Eating disorder that was diagnosed before pregnancy and pregnancy outcome. Am J Obstet Gynecol. 2004;190:206–10.

    Article  PubMed  Google Scholar 

  75. Copeland PM, Sacks NR, Herzog DB. Longitudinal follow-up of amenorrhea in eating disorders. Psychosom Med. 1995;57:121–6.

    Article  CAS  PubMed  Google Scholar 

  76. Dokras A, Baredziak L, Blaine J, Syrop C, VanVoorhis BJ, Sparks A. Obstetric outcomes after in vitro fertilization in obese and morbidly obese women. Obstet Gynecol. 2006;108:61–9.

    Article  PubMed  Google Scholar 

  77. Becker AE, Thomas JJ, Franko DL, Herzog DB. Disclosure patterns of eating and weight concerns to clinicians, educational professionals, family, and peers. Int J Eat Disord. 2005;38:18–23.

    Article  PubMed  Google Scholar 

  78. Schneiderman N, Ironson G, Siegel SD. Stress and health: psychological, behavioral, and biological determinants. Annu Rev Clin Psychol. 2005;1:607–28.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Melchior M, Caspi A, Milne BJ, Danese A, Poulton R, Moffitt TE. Work stress precipitates depression and anxiety in young, working women and men. Psychol Med. 2007;37:1119–29.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Barzilai-Pesach V, Sheiner EK, Sheiner E, Potashnik G, Shoham-Vardi I. The effect of women’s occupational psychologic stress on outcome of fertility treatments. J Occup Environ Med. 2006;48:56–62.

    Article  PubMed  Google Scholar 

  81. Berga SL. Functional hypothalamic chronic anovulation. Reprod Endocrinol Surg Technol. 1996;1:1061–75.

    Google Scholar 

  82. Marcus MD, Loucks TL, Berga SL. Psychological correlates of functional hypothalamic amenorrhea. Fertil Steril. 2001;76:310–6.

    Article  CAS  PubMed  Google Scholar 

  83. McLean M, Thompson D, Zhang H-P, Brinsmead M, Smith R. Corticotrophin-releasing hormone and β-endorphin in labour. Eur J Endocrinol. 1994;131:167–72.

    Article  CAS  PubMed  Google Scholar 

  84. Harris A, Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm Behav. 2011;59:279–89.

    Article  CAS  PubMed  Google Scholar 

  85. Kurki T, Hiilesmaa V, Raitasalo R, Mattila H, Ylikorkala O. Depression and anxiety in early pregnancy and risk for preeclampsia. Obstet Gynecol. 2000;95:487–90.

    CAS  PubMed  Google Scholar 

  86. Oren DA, Wisner KL, Spinelli M, Epperson CN, Peindl KS, Terman JS, et al. An open trial of morning light therapy for treatment of antepartum depression. Am J Psychiatry. 2002;159:666–9.

    Article  PubMed  Google Scholar 

  87. Whirledge S, Cidlowski JA. Glucocorticoids, stress, and fertility. Minerva Endocrinol. 2010;35:109.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bao A-M, Meynen G, Swaab DF. The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev. 2008;57:531–53.

    Article  CAS  PubMed  Google Scholar 

  89. Sawchenko PE. Adrenalectomy-induced enhancement of CRF and vasopressin immunoreactivity in parvocellular neurosecretory neurons: anatomic, peptide, and steroid specificity. J Neurosci. 1987;7:1093–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rivier C, Rivier J, Vale W. Stress-induced inhibition of reproductive functions: role of endogenous corticotropin-releasing factor. Science (80- ). 1986;231:607–9.

    Article  CAS  Google Scholar 

  91. MacLusky NJ, Naftolin F, Leranth C. Immunocytochemical evidence for direct synaptic connections between corticotrophin-releasing factor (CRF) and gonadotrophin-releasing hormone (GnRH)-containing neurons in the preoptic area of the rat. Brain Res. 1988;439:391–5.

    Article  CAS  PubMed  Google Scholar 

  92. Ma YJ, Kelly MJ, Rönnekleiv OK. Pro-gonadotropin-releasing hormone (Prognrh) and gnrh content in the preoptic area and the basal hypothalamus of anterior medial preoptic nucleus/suprachiasmatic nucleus-lesioned persistent estrous rats. Endocrinology. 1990;127:2654–64. https://doi.org/10.1210/endo-127-6-2654.

    Article  CAS  PubMed  Google Scholar 

  93. Bohler HCL Jr, Zoeller RT, King JC, Rubin BS, Weber R, Merriam GR. Corticotropin releasing hormone mRNA is elevated on the afternoon of proestrus in the parvocellular paraventricular nuclei of the female rat. Mol Brain Res. 1990;8:259–62.

    Article  CAS  PubMed  Google Scholar 

  94. Sirinathsinghji DJS. Regulation of lordosis behaviour in the female rat by corticotropin-releasing factor, β-endorphin/corticotropin and luteinizing hormone-releasing hormone neuronal systems in the medial preoptic area. Brain Res. 1986;375:49–56.

    Article  CAS  PubMed  Google Scholar 

  95. Watson SJ, Akil H, Fischli W, Goldstein A, Zimmerman E, Nilaver G, et al. Dynorphin and vasopressin: common localization in magnocellular neurons. Science (80- ). 1982;216:85–7.

    Article  CAS  Google Scholar 

  96. Belhadj H, De Besi L, Bardin CW, Thau RB. The implication of opiates in the glucocorticoid-mediated inhibition of LH secretion in rats. J Endocrinol. 1989;122:451–6.

    Article  CAS  PubMed  Google Scholar 

  97. Assenmacher I, Szafarczyk A, Alonso G, Ixart G, Barbanel G. Physiology of neural pathways affecting CRH secretion. Ann N Y Acad Sci. 1987;512:149–61.

    Article  CAS  PubMed  Google Scholar 

  98. Whirledge S, Cidlowski JA. Estradiol antagonism of glucocorticoid-induced GILZ expression in human uterine epithelial cells and murine uterus. Endocrinology. 2013;154:499–510.

    Article  CAS  PubMed  Google Scholar 

  99. Bao A-M, Hestiantoro A, Van Someren EJW, Swaab DF, Zhou J-N. Colocalization of corticotropin-releasing hormone and oestrogen receptor-α in the paraventricular nucleus of the hypothalamus in mood disorders. Brain. 2005;128:1301–13.

    Article  PubMed  Google Scholar 

  100. Vamvakopoulos NC, Chrousos GP. Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. Potential implications for the sexual dimophism of the stress response and immune/inflammatory reaction. J Clin Invest. 1993;92:1896–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Young EA, Midgley AR, Carlson NE, Brown MB. Alteration in the hypothalamic-pituitary-ovarian axis in depressed women. Arch Gen Psychiatry. 2000;57:1157–62.

    Article  CAS  PubMed  Google Scholar 

  102. Samuels MH, Luther M, Henry P, Ridgway EC. Effects of hydrocortisone on pulsatile pituitary glycoprotein secretion. J Clin Endocrinol Metab. 1994;78:211–5.

    CAS  PubMed  Google Scholar 

  103. Sapolsky RM, Krey LC, McEwen BS. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Sci SAGE KE. 2002;2002:21.

    Google Scholar 

  104. Ebbesen SMS, Zachariae R, Mehlsen MY, Thomsen D, Højgaard A, Ottosen L, et al. Stressful life events are associated with a poor in-vitro fertilization (IVF) outcome: a prospective study. Hum Reprod. 2009;24:2173–82.

    Article  CAS  PubMed  Google Scholar 

  105. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science (80- ). 2005;308:1043–5.

    Article  CAS  Google Scholar 

  106. Al-Aama T, Brymer C, Gutmanis I, Woolmore-Goodwin SM, Esbaugh J, Dasgupta M. Melatonin decreases delirium in elderly patients: a randomized, placebo-controlled trial. Int J Geriatr Psychiatry. 2011;26:687–94.

    Article  PubMed  Google Scholar 

  107. Attarchi M, Darkhi H, Kashanian M. Characteristics of menstrual cycle in shift workers. Global J Health Sci. 2013;5:163.

    Article  Google Scholar 

  108. Carlomagno G, Nordio M, Chiu TT, Unfer V. Contribution of myo-inositol and melatonin to human reproduction. Eur J Obstet Gynecol Reprod Biol. 2011;159:267–72. https://doi.org/10.1016/j.ejogrb.2011.07.038.

    Article  CAS  PubMed  Google Scholar 

  109. Voiculescu SE, Zygouropoulos N, Zahiu CD, Zagrean AM. Role of melatonin in embryo fetal development. J Med Life. 2014;7:488–92 25713608.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hobson SR, Lim R, Gardiner EE, Alers NO, Wallace EM. Phase I pilot clinical trial of antenatal maternally administered melatonin to decrease the level of oxidative stress in human pregnancies affected by pre-eclampsia (PAMPR): Study protocol. BMJ Open. 2013;3. https://doi.org/10.1136/bmjopen-2013-003788.

  111. Voordouw BC, Euser R, Verdonk RE, Alberda BT, de Jong FH, Drogendijk AC, et al. Melatonin and melatonin-progestin combinations alter pituitary-ovarian function in women and can inhibit ovulation. J Clin Endocrinol Metab. 1992;74:108–17.

    CAS  PubMed  Google Scholar 

  112. Salhab M, Dhorne-Pollet S, Auclair S, Guyader-Joly C, Brisard D, Dalbies-Tran R, et al. In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Mol Reprod Dev. 2013;80:166–82. https://doi.org/10.1002/mrd.22148.

    Article  CAS  PubMed  Google Scholar 

  113. Bahadori MH, Ghasemian F, Ramezani M, Asgari Z. Melatonin effect during different maturation stages of oocyte and subsequent embryo development in mice. Iran J Reprod Med. 2013;11:11.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Tamura H, Kawamoto M, Sato S, Tamura I, Maekawa R, Taketani T, et al. Long-term melatonin treatment delays ovarian aging. J Pineal Res. 2017;62:e12381.

    Article  CAS  Google Scholar 

  115. Srinivasan V, Spence WD, Pandi-Perumal SR, Zakharia R, Bhatnagar KP, Brzezinski A. Melatonin and human reproduction: shedding light on the darkness hormone. Gynecol Endocrinol. 2009;25:779–85.

    Article  CAS  PubMed  Google Scholar 

  116. Rosevear SK, Ford WCL, Wardle PG, Hull MGR, Holt DW, Lee TD. Smoking and decreased fertilization rates in vitro. The Lancet. 1992;340(8829):1195–96.

  117. Wong-Gibbons DL, Romitti PA, Sun L, Moore CA, Reefhuis J, Bell EM, et al. Maternal periconceptional exposure to cigarette smoking and alcohol and esophageal atresia±tracheo-esophageal fistula. Birth Defects Res Part A Clin Mol Teratol. 2008;82:776–84.

    Article  CAS  Google Scholar 

  118. Eggert J, Theobald H, Engfeldt P. Effects of alcohol consumption on female fertility during an 18-year period. Fertil Steril. 2004;81:379–83.

    Article  PubMed  Google Scholar 

  119. Jensen TK, Hjollund NHI, Henriksen TB, Scheike T, Kolstad H, Giwercman A, et al. Does moderate alcohol consumption affect fertility? Follow up study among couples planning first pregnancy. Bmj. 1998;317:505–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kesmodel U, Wisborg K, Olsen SF, Brink Henriksen T, Jørgen Secher N. Moderate alcohol intake in pregnancy and the risk of spontaneous abortion. Alcohol Alcohol. 2002;37:87–92.

    Article  PubMed  Google Scholar 

  121. Harrison PA, Sidebottom AC. Alcohol and drug use before and during pregnancy: an examination of use patterns and predictors of cessation. Matern Child Health J. 2009;13:386.

    Article  PubMed  Google Scholar 

  122. Malik S, Cleves MA, Honein MA, Romitti PA, Botto LD, Yang S, et al. Maternal smoking and congenital heart defects. Pediatrics. 2008;121:e810–6.

    Article  PubMed  Google Scholar 

  123. Albertsen K, Andersen A-MN, Olsen J, Grønbæk M. Alcohol consumption during pregnancy and the risk of preterm delivery. Am J Epidemiol. 2004;159:155–61.

    Article  PubMed  Google Scholar 

  124. Sarkola T, Mäkisalo H, Fukunaga T, Eriksson CJP. Acute effect of alcohol on estradiol, estrone, progesterone, prolactin, cortisol, and luteinizing hormone in premenopausal women. Alcohol Clin Exp Res. 1999;23:976–82.

    Article  CAS  PubMed  Google Scholar 

  125. Srivastava VK, Dissen GA, Ojeda SR, Hiney JK, Pine MD, Dees WL. Effects of alcohol on intraovarian nitric oxide synthase and steroidogenic acute regulatory protein in the prepubertal female rhesus monkey. J Stud Alcohol Drugs. 2007;68:182–91.

    Article  PubMed  Google Scholar 

  126. Sarkar DK. Hyperprolactinemia following chronic alcohol administration. Pituit. Today II, vol. 38, Karger Publishers; 2010, p. 32–41.

  127. Perreau-Lenz S, Zghoul T, Spanagel R. Clock genes running amok: Clock genes and their role in drug addiction and depression. EMBO Rep. 2007;8:S20–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stene-Larsen K, Borge AIH, Vollrath ME. Maternal smoking in pregnancy and externalizing behavior in 18-month-old children: results from a population-based prospective study. J Am Acad Child Adolesc Psychiatry. 2009;48:283–9.

    Article  PubMed  Google Scholar 

  129. James WH. Potential explanation of the reported association between maternal smoking and autism. Environ Health Perspect. 2013;121:a42.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Sharara FI, Beatse SN, Leonardi MR, Navot D, Scott RT Jr. Cigarette smoking accelerates the development of diminished ovarian reserve as evidenced by the clomiphene citrate challenge test. Fertil Steril. 1994;62:257–62.

    Article  CAS  PubMed  Google Scholar 

  131. Fergusson DM, Woodward LJ, Horwood LJ. Maternal smoking during pregnancy and psychiatric adjustment in late adolescence. Arch Gen Psychiatry. 1998;55:721–7.

    Article  CAS  PubMed  Google Scholar 

  132. Lambers DS, Clark KE. The maternal and fetal physiologic effects of nicotine. Semin. Perinatol., vol. 20. Elsevier; 1996. p. 115–26.

  133. Michnovicz JJ, Hershcopf RJ, Naganuma H, Bradlow HL, Fishman J. Increased 2-hydroxylation of estradiol as a possible mechanism for the anti-estrogenic effect of cigarette smoking. N Engl J Med. 1986;315:1305–9.

    Article  CAS  PubMed  Google Scholar 

  134. Cramer DW, Barbieri RL, Xu H, Reichardt JK. Determinants of basal follicle-stimulating hormone levels in premenopausal women. J Clin Endocrinol Metab. 1994;79:1105–9.

    CAS  PubMed  Google Scholar 

  135. Sun B, Sterling CR, Tank AW. Chronic nicotine treatment leads to sustained stimulation of tyrosine hydroxylase gene transcription rate in rat adrenal medulla. J Pharmacol Exp Ther. 2003;304:575–88.

    Article  CAS  PubMed  Google Scholar 

  136. Windham GC, Mitchell P, Anderson M, Lasley BL. Cigarette smoking and effects on hormone function in premenopausal women. Environ Health Perspect. 2005;113:1285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kuczkowski KM. Social drug use in the parturient: implications for the management of obstetrical anaesthesia. Med J Malaysia. 2003;58:147–54.

    CAS  PubMed  Google Scholar 

  138. Chen L-W, Wu Y, Neelakantan N, Chong MF-F, Pan A, van Dam RM. Maternal caffeine intake during pregnancy is associated with risk of low birth weight: a systematic review and dose-response meta-analysis. BMC Med. 2014;12:174.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hassan MAM, Killick SR. Negative lifestyle is associated with a significant reduction in fecundity. Fertil Steril. 2004;81:384–92.

    Article  PubMed  Google Scholar 

  140. Lawson CC, LeMasters GK, Wilson KA. Changes in caffeine consumption as a signal of pregnancy. Reprod Toxicol. 2004;18:625–33.

    Article  CAS  PubMed  Google Scholar 

  141. Lassi ZS, Imam AM, Dean SV, Bhutta ZA. Preconception care: caffeine, smoking, alcohol, drugs and other environmental chemical/radiation exposure. Reprod Health. 2014;11:S6.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ma Z l, Qin Y, Wang G, Li X d, He R r, Chuai M, et al. Exploring the caffeine-induced teratogenicity on neurodevelopment using early chick embryo. PLoS One. 2012;7. https://doi.org/10.1371/journal.pone.0034278.

  143. Tinwell H, Colombel S, Blanck O, Bars R. The screening of everyday life chemicals in validated assays targeting the pituitary-gonadal axis. Regul Toxicol Pharmacol. 2013;66:184–96. https://doi.org/10.1016/j.yrtph.2013.04.002.

    Article  CAS  PubMed  Google Scholar 

  144. Lucero J, Harlow BL, Barbieri RL, Sluss P, Cramer DW. Early follicular phase hormone levels in relation to patterns of alcohol, tobacco, and coffee use. Fertil Steril. 2001;76:723–9. https://doi.org/10.1016/S0015-0282(01)02005-2.

    Article  CAS  PubMed  Google Scholar 

  145. Miao YL, Shi LH, Lei ZL, Huang JC, Yang JW, OuYang YC, et al. Effects of caffeine on in vivo and in vitro oocyte maturation in mice. Theriogenology. 2007;68:640–5. https://doi.org/10.1016/j.theriogenology.2007.04.061.

    Article  CAS  PubMed  Google Scholar 

  146. Strauss J, Barbieri R. Yen & Jaffe’s Reproductive Endocrinology. 2009. https://doi.org/10.1016/B978-1-4160-4907-4.X0001-0.

  147. Odenheimer DJ, Zunzunegui MV, King MC, Shipler CP, Friedman GD. Risk factors for benign breast disease: a case-control study of discordant twins. Am J Epidemiol. 1984;120:565–71.

    Article  CAS  PubMed  Google Scholar 

  148. Downer EJ, Campbell VA. Phytocannabinoids, CNS cells and development: a dead issue? Drug Alcohol Rev. 2010;29:91–8.

    Article  PubMed  Google Scholar 

  149. Fergusson DM, Boden JM. Cannabis use and later life outcomes. Addiction. 2008;103:969–76.

    Article  PubMed  Google Scholar 

  150. Fried PA, Smith AM. A literature review of the consequences of prenatal marihuana exposure: an emerging theme of a deficiency in aspects of executive function. Neurotoxicol Teratol. 2001;23:1–11.

    Article  CAS  PubMed  Google Scholar 

  151. Fergusson DM, Horwood LJ, Northstone K, Team AS. Maternal use of cannabis and pregnancy outcome. BJOG Int J Obstet Gynaecol. 2002;109:21–7.

    Article  Google Scholar 

  152. Battista N, Pasquariello N, Di Tommaso M, Maccarrone M. Interplay between endocannabinoids, steroids and cytokines in the control of human reproduction. J Neuroendocrinol. 2008;20:82–9.

    Article  CAS  PubMed  Google Scholar 

  153. Bari M, Battista N, Pirazzi V, Maccarrone M. The manifold actions of endocannabinoids on female and male reproductive events. Front Biosci. 2011;16:e516.

    Article  Google Scholar 

  154. Hoyme HE, Jones KL, Dixon SD, Jewett T, Hanson JW, Robinson LK, et al. Prenatal cocaine exposure and fetal vascular disruption. Pediatrics. 1990;85:743–7.

    CAS  PubMed  Google Scholar 

  155. Walker QD, Francis R, Cabassa J, Kuhn CM. Effect of ovarian hormones and estrous cycle on stimulation of the hypothalamo-pituitary-adrenal axis by cocaine. J Pharmacol Exp Ther. 2001;297:291–8.

    CAS  PubMed  Google Scholar 

  156. Murphy LL, Muñoz RM, Adrian BA, Villanúa MA. Function of cannabinoid receptors in the neuroendocrine regulation of hormone secretion. Neurobiol Dis. 1998;5:432–46.

    Article  CAS  PubMed  Google Scholar 

  157. Takeda S, Yoshida K, Nishimura H, Harada M, Okajima S, Miyoshi H, et al. Δ9-Tetrahydrocannabinol disrupts estrogen-signaling through up-regulation of estrogen receptor β (ERβ). Chem Res Toxicol. 2013;26:1073–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. El-Talatini MR, Taylor AH, Konje JC. The relationship between plasma levels of the endocannabinoid, anandamide, sex steroids, and gonadotrophins during the menstrual cycle. Fertil Steril. 2010;93:1989–96.

    Article  CAS  PubMed  Google Scholar 

  159. El-Talatini MR, Taylor AH, Elson JC, Brown L, Davidson AC, Konje JC. Localisation and function of the endocannabinoid system in the human ovary. PLoS One. 2009;4:e4579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Brents LK. Marijuana, the endocannabinoid system and the female reproductive system. Yale J Biol Med. 2016;89:175–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Khare M, Taylor AH, Konje JC, Bell SC. Δ9-Tetrahydrocannabinol inhibits cytotrophoblast cell proliferation and modulates gene transcription. Mol Hum Reprod. 2006;12:321–33. https://doi.org/10.1093/molehr/gal036.

    Article  CAS  PubMed  Google Scholar 

  162. Small E. Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. Bot Rev. 2015;81:189–294. https://doi.org/10.1007/s12229-015-9157-3.

    Article  Google Scholar 

  163. Sangha GK. Protective effects of wheat germ against the reproductive toxicity of dimethioate onfemale rats 2015.

    Google Scholar 

  164. Mrema EJ, Ngowi AV, Kishinhi SS, Mamuya SH. Pesticide exposure and health problems among female horticulture workers in Tanzania. Environ Health Insights. 2017;11:1178630217715237.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Idrovo AJ, Sanìn LH, Cole D, Chavarro J, Cáceres H, Narváez J, et al. Time to first pregnancy among women working in agricultural production. Int Arch Occup Environ Health. 2005;78:493–500.

    Article  PubMed  Google Scholar 

  166. Vinggaard AM, Hnida C, Breinholt V, Larsen JC. Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro. Toxicol in Vitro. 2000;14:227–34.

    Article  CAS  PubMed  Google Scholar 

  167. Baligar PN, Kaliwal BB. Induction of gonadal toxicity to female rats after chronic exposure to mancozeb. Ind Health. 2001;39:235–43.

    Article  CAS  PubMed  Google Scholar 

  168. Bindali BB, Kaliwal BB. Anti-implantation effect of a carbamate fungicide mancozeb in albino mice. Ind Health. 2002;40:191–7.

    Article  CAS  PubMed  Google Scholar 

  169. Cummings AM, Perreault SD. Methoxychlor accelerates embryo transport through the rat reproductive tract. Toxicol Appl Pharmacol. 1990;102:110–6.

    Article  CAS  PubMed  Google Scholar 

  170. Kezios KL, Liu X, Cirillo PM, Cohn BA, Kalantzi OI, Wang Y, et al. Dichlorodiphenyltrichloroethane (DDT), DDT metabolites and pregnancy outcomes. Reprod Toxicol. 2013;35:156–64.

    Article  CAS  PubMed  Google Scholar 

  171. Fein GG, Jacobson JL, Jacobson SW, Schwartz PM, Dowler JK. Prenatal exposure to polychlorinated biphenyls: effects on birth size and gestational age. J Pediatr. 1984;105:315–20.

    Article  CAS  PubMed  Google Scholar 

  172. Kurian JR, Keen KL, Kenealy BP, Garcia JP, Hedman CJ, Terasawa E. Acute influences of bisphenol A exposure on hypothalamic release of gonadotropin-releasing hormone and kisspeptin in female rhesus monkeys. Endocrinology. 2015;156:2563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Jablonka E, Lamb MJ. Epigenetic inheritance in evolution. J Evol Biol. 1998;11(2):159–83.

    Article  Google Scholar 

  174. Reed CE, Fenton SE. Exposure to diethylstilbestrol during sensitive life stages: a legacy of heritable health effects. Birth Defects Res Part C Embryo Today Rev. 2013;99:134–46.

    Article  CAS  Google Scholar 

  175. Taylor HS, Vanden Heuvel GB, Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod. 1997;57:1338–45.

    Article  CAS  PubMed  Google Scholar 

  176. Vitiello D, Pinard R, Taylor HS. Gene expression profiling reveals putative HOXA10 downstream targets in the periimplantation mouse uterus. Reprod Sci. 2008;15:529–35.

    Article  CAS  PubMed  Google Scholar 

  177. Yin Y, Lin C, Ma L. MSX2 promotes vaginal epithelial differentiation and wolffian duct regression and dampens the vaginal response to diethylstilbestrol. Mol Endocrinol. 2006;20:1535–46.

    Article  CAS  PubMed  Google Scholar 

  178. Colton T, Greenberg ER, Noller K, Resseguie L, Van Bennekom C, Heeren T, et al. Breast cancer in mothers prescribed diethylstilbestrol in pregnancy: further follow-up. Jama. 1993;269:2096.

    Article  CAS  PubMed  Google Scholar 

  179. Lassurguere J, Livera G, Habert R, Jégou B. Time-and dose-related effects of estradiol and diethylstilbestrol on the morphology and function of the fetal rat testis in culture. Toxicol Sci. 2003;73:160–9.

    Article  CAS  PubMed  Google Scholar 

  180. Yang CY, Yu ML, Guo HR, Lai TJ, Hsu CC, Lambert G, et al. The endocrine and reproductive function of the female Yucheng adolescents prenatally exposed to PCBs/PCDFs. Chemosphere. 2005;61:355–60.

    Article  CAS  PubMed  Google Scholar 

  181. Yu ML, Guo YL, Hsu CC, Rogan WJ. Menstruation and reproduction in women with polychlorinated biphenyl (PCB) poisoning: long-term follow-up interviews of the women from the Taiwan Yucheng cohort. Int J Epidemiol. 2000;29:672–7.

    Article  CAS  PubMed  Google Scholar 

  182. Tatsuta N, Kurokawa N, Nakai K, Suzuki K, Iwai-Shimada M, Murata K, et al. Effects of intrauterine exposures to polychlorinated biphenyls, methylmercury, and lead on birth weight in Japanese male and female newborns. Environ Health Prev Med. 2017;22(1):39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Smith KW, Souter I, Dimitriadis I, Ehrlich S, Williams PL, Calafat AM, et al. Urinary paraben concentrations and ovarian aging among women from a fertility center. Environ Health Perspect. 2013;121:1299–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Vo TTB, Yoo YM, Choi KC, Jeung EB. Potential estrogenic effect (s) of parabens at the prepubertal stage of a postnatal female rat model. Reprod Toxicol. 2010;29:306–16.

    Article  CAS  PubMed  Google Scholar 

  185. Craig ZR, Singh J, Gupta RK, Flaws JA. Co-treatment of mouse antral follicles with 17β-estradiol interferes with mono-2-ethylhexyl phthalate (MEHP)-induced atresia and altered apoptosis gene expression. Reprod Toxicol. 2014;45:45–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Hannon PR, Niermann S, Flaws JA. Acute exposure to di (2-ethylhexyl) phthalate in adulthood causes adverse reproductive outcomes later in life and accelerates reproductive aging in female mice. Toxicol Sci. 2015;150:97–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Davis BJ, Maronpot RR, Heindel JJ. Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicol Appl Pharmacol. 1994;128:216–23.

    Article  CAS  PubMed  Google Scholar 

  188. Huo X, Chen D, He Y, Zhu W, Zhou W, Zhang J. Bisphenol-a and female infertility: a possible role of gene-environment interactions. Int J Environ Res Public Health. 2015;12:11101–16. https://doi.org/10.3390/ijerph120911101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bretveld RW, Thomas CMG, Scheepers PTJ, Zielhuis GA, Roeleveld N. Pesticide exposure: the hormonal function of the female reproductive system disrupted? Reprod Biol Endocrinol. 2006;4:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee D-H, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33:378–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Marques-Pinto A, Carvalho D. Human infertility: are endocrine disruptors to blame? Endocr Connect. 2013;2:R15–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Loose DS, Kan PB, Hirst MA, Marcus RA, Feldman D. Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P450-dependent enzymes. J Clin Invest. 1983;71:1495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Stamatian F, Goidescu I. Side effects of endocrine disruptors on the human reproductive function. Obstet si Ginecol. 2016;64(4):205–14.

  194. Hernández-Ochoa I, Karman BN, Flaws JA. The role of the aryl hydrocarbon receptor in the female reproductive system. Biochem Pharmacol. 2009;77:547–59.

    Article  PubMed  CAS  Google Scholar 

  195. Ruder EH, Hartman TJ, Blumberg J, Goldman MB. Oxidative stress and antioxidants: exposure and impact on female fertility. Hum Reprod Update. 2008;14:345–57.

    Article  CAS  PubMed  Google Scholar 

  196. Barth A, Brucker N, Moro AM, Nascimento S, Goethel G, Souto C, et al. Association between inflammation processes, DNA damage, and exposure to environmental pollutants. Environ Sci Pollut Res. 2017;24:353–62.

    Article  CAS  Google Scholar 

  197. Cao Y. Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications. Front Med. 2015;9:261–74.

    Article  PubMed  Google Scholar 

  198. Byun H-M, Barrow TM. Analysis of pollutant-induced changes in mitochondrial DNA methylation. Mitochondrial Med. Springer; 2015. p. 271–83.

  199. Nieuwenhuijsen MJ, Basagaña X, Dadvand P, Martinez D, Cirach M, Beelen R, et al. Air pollution and human fertility rates. Environ Int. 2014;70:9–14.

    Article  CAS  PubMed  Google Scholar 

  200. Carré J, Gatimel N, Moreau J, Parinaud J, Léandri R. Does air pollution play a role in infertility?: a systematic review. Environ Health. 2017;16:82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Stansfeld SA, Matheson MP. Noise pollution: non-auditory effects on health. Br Med Bull. 2003;68:243–57. https://doi.org/10.1093/bmb/ldg033.

    Article  PubMed  Google Scholar 

  202. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015;525:367.

    Article  CAS  PubMed  Google Scholar 

  203. Wang H, Li J, Hao J-H, Chen Y-H, Liu L, Yu Z, et al. High serum lead concentration in the first trimester is associated with an elevated risk of small-for-gestational-age infants. Toxicol Appl Pharmacol. 2017;332:75–80.

    Article  CAS  PubMed  Google Scholar 

  204. Sabra S, Malmqvist E, Saborit A, Gratacós E, Roig MDG. Heavy metals exposure levels and their correlation with different clinical forms of fetal growth restriction. PLoS One. 2017;12:e0185645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Wang H, Liu L, Hu Y-F, Hao J-H, Chen Y-H, Su P-Y, et al. Association of maternal serum cadmium level during pregnancy with risk of preterm birth in a Chinese population. Environ Pollut. 2016;216:851–7.

    Article  CAS  PubMed  Google Scholar 

  206. Kawakami T, Yoshimi M, Kadota Y, Inoue M, Sato M, Suzuki S. Prolonged endoplasmic reticulum stress alters placental morphology and causes low birth weight. Toxicol Appl Pharmacol. 2014;275:134–44.

    Article  CAS  PubMed  Google Scholar 

  207. Barouki R, Aggerbeck M, Aggerbeck L, Coumoul X. The aryl hydrocarbon receptor system. Drug Metabol Drug Interact. 2012;27:3–8.

    Article  CAS  PubMed  Google Scholar 

  208. Lipscomb JA, Fenster L, Wrensch M, Shusterman D, Swan S. Pregnancy outcomes in women potentially exposed to occupational solvents and women working in the electronics industry. J Occup Med Off Publ Ind Med Assoc. 1991;33:597–604.

    CAS  Google Scholar 

  209. Malloul H, Mahdani FM, Bennis M, Ba-M’hamed S. Prenatal exposure to paint thinner alters postnatal development and behavior in mice. Front Behav Neurosci. 2017;11:171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Sreetharan S, Thome C, Tharmalingam S, Jones DE, Kulesza AV, Khaper N, et al. Ionizing radiation exposure during pregnancy: effects on postnatal development and life. Radiat Res. 2017;187:647–58. https://doi.org/10.1667/RR14657.1.

    Article  CAS  PubMed  Google Scholar 

  211. Van den Hof MC, Wilson RD. Diagnostic Imaging Committee, Society of Obstetricians and Gynaecologists of Canada; Genetics Committee, Society of Obstetricians and Gynaecologists of Canada. Fetal soft markers in obstetric ultrasound. J Obstet Gynaecol Can. 2005;27:592–636.

    Article  PubMed  Google Scholar 

  212. Santivasi WL, Xia F. Ionizing Radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 2014;21:251–9. https://doi.org/10.1089/ars.2013.5668.

    Article  CAS  PubMed  Google Scholar 

  213. De Santis M, Cesari E, Nobili E, Straface G, Cavaliere AF, Caruso A. Radiation effects on development. Birth Defects Res Part C Embryo Today Rev. 2007;81:177–82.

    Article  CAS  Google Scholar 

  214. Lee CJ, Yoon Y-D. γ-Radiation-induced follicular degeneration in the prepubertal mouse ovary. Mutat Res Mol Mech Mutagen. 2005;578:247–55.

    Article  CAS  Google Scholar 

  215. Signorello LB, Cohen SS, Bosetti C, Stovall M, Kasper CE, Weathers RE, et al. Female survivors of childhood cancer: preterm birth and low birth weight among their children. J Natl Cancer Inst. 2006;98:1453–61.

    Article  PubMed  Google Scholar 

  216. Signorello LB, Mulvihill JJ, Green DM, Munro HM, Stovall M, Weathers RE, et al. Stillbirth and neonatal death in relation to radiation exposure before conception: a retrospective cohort study. Lancet. 2010;376:624–30.

    Article  PubMed  PubMed Central  Google Scholar 

  217. McLaren JF, Bates GW. Fertility preservation in women of reproductive age with cancer. Am J Obstet Gynecol. 2012;207:455–62.

    Article  PubMed  Google Scholar 

  218. Waimey KE, Duncan FE, Su HI, Smith K, Wallach H, Jona K, et al. Future directions in oncofertility and fertility preservation: a report from the 2011 oncofertility consortium conference. J Adolesc Young Adult Oncol. 2013;2:25–30.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Sabarre K-A, Khan Z, Whitten AN, Remes O, Phillips KP. A qualitative study of Ottawa university students’ awareness, knowledge and perceptions of infertility, infertility risk factors and assisted reproductive technologies (ART). Reprod Health. 2013;10:41.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Bongaarts J. The causes of educational differences in fertility in Sub-Saharan Africa. Vienna yearbook of population research. 2010;8:31–50.

  221. Prata N, Fraser A, Huchko MJ, Gipson JD, Withers M, Lewis S, et al. Women’s empowerment and family planning: a review of the literature. J Biosoc Sci. 2017;49:713–43.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Sahu B, van Wissen LJG, Hutter I, Bosch A. Fertility differentials among religious minorities: cross-national and regional evidence from India and Bangladesh. Popul Space Place. 2012;18:503–15.

    Article  Google Scholar 

  223. Wickrama KAS, Keith PM. Use and evaluation of healthcare services by male-and female-headed households in rural Sri Lanka. J Dev Areas. 1990;25:1–14.

    Google Scholar 

  224. Konteh R. Socio-economic and other variables affecting maternal mortality in Sierra Leone. Community Dev J. 1997;32:49–64.

    Article  CAS  PubMed  Google Scholar 

  225. Van den Hof MC, Wilson RD, Akande V, Turner C, Horner P, Horne A, et al. Impact of chlamydia trachomatis in the reproductive setting: British fertility society guidelines for practice. Hum Fertil. 2010;27:115–25.

    Google Scholar 

  226. Nusbaum MRH, Wallace RR, Slatt LM, Kondrad EC. Sexually transmitted infections and increased risk of co-infection with human immunodeficiency virus. J Am Osteopath Assoc. 2004;104:527–35.

    PubMed  Google Scholar 

  227. Marston M, Zaba B, Eaton JW. The relationship between HIV and fertility in the era of antiretroviral therapy in sub-Saharan Africa: evidence from 49 demographic and health surveys. Trop Med Int Health. 2017;22:1542–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Dhont N, Van de Wijgert J, Luchters S, Muvunyi C, Vyankandondera J, Temmerman M. Sexual violence, HSV-2 and HIV are important predictors for infertility in Rwanda. Hum Reprod. 2010;25:2507–15.

    Article  CAS  PubMed  Google Scholar 

  229. Wieser F, Knight JH, Khan AA. Abuse in childhood and risk of endometriosis 2012.

    Book  Google Scholar 

  230. Jacobs MB, Boynton-Jarrett RD, Harville EW. Adverse childhood event experiences, fertility difficulties and menstrual cycle characteristics. J Psychosom Obstet Gynecol. 2015;36:46–57.

    Article  Google Scholar 

  231. Maxwell L, Nandi A, Benedetti A, Devries K, Wagman J, García-Moreno C. Intimate partner violence and pregnancy spacing: results from a meta-analysis of individual participant time-to-event data from 29 low-and-middle-income countries. BMJ Glob Health. 2018;3:e000304.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Laelago T, Belachew T, Tamrat M. Effect of intimate partner violence on birth outcomes. Afr Health Sci. 2017;17:681–9.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Rahman M. Intimate partner violence and termination of pregnancy: a cross-sectional study of married Bangladeshi women. Reprod Health. 2015;12:102.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Finnbogadóttir H, Dykes A-K, Wann-Hansson C. Prevalence and incidence of domestic violence during pregnancy and associated risk factors: a longitudinal cohort study in the south of Sweden. BMC Pregnancy Childbirth. 2016;16:228.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Kathol RG, Anton R, Noyes R, Gehris T. Direct comparison of urinary free cortisol excretion in patients with depression and panic disorder. Biol Psychiatry. 1989;25:873–8.

    Article  CAS  PubMed  Google Scholar 

  236. Parry BL, Javeed S, Laughlin GA, Hauger R, Clopton P. Cortisol circadian rhythms during the menstrual cycle and with sleep deprivation in premenstrual dysphoric disorder and normal control subjects. Biol Psychiatry. 2000;48:920–31.

    Article  CAS  PubMed  Google Scholar 

  237. Ward AMV, Phillips DIW. Fetal programming of stress responses. Stress. 2001;4:263–71.

    Article  PubMed  Google Scholar 

  238. Buchvold HV, Pallesen S, Øyane NMF, Bjorvatn B. Associations between night work and BMI, alcohol, smoking, caffeine and exercise-a cross-sectional study. BMC Public Health. 2015;15:1112.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Ohida T, Kamal AMM, Sone T, Ishii T, Uchiyama M, Minowa M, et al. Night-shift work related problems in young female nurses in Japan. J Occup Health. 2001;43:150–6.

    Article  Google Scholar 

  240. Puttonen S, Härmä M, Hublin C. Shift work and cardiovascular disease—pathways from circadian stress to morbidity. Scand J Work Environ Health. 2010;36(2):96–108.

  241. Shy BD, Portelli I, Nelson LS. Emergency medicine residents’ use of psychostimulants and sedatives to aid in shift work. Am J Emerg Med. 2011;29:1034–6.

    Article  PubMed  Google Scholar 

  242. Sarkar NN. Socio-economic and gender disadvantage affecting physical, mental and reproductive health of women in India. Int Med J. 2008;15:261–4.

  243. Merghati-Khoei E, Rimaz S, Korte JE, Back SE, Brady KT, Abad M, et al. Intimate partner violence and risky sexual behaviors among Iranian women with substance use disorders. Med J Islam Repub Iran. 2015;29:174.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RB is thankful to University Grant Commission (UGC), Govt. Of India for Junior Research Fellowship.

Funding

This work was supported by the Department of Biotechnology (DBT) under grant 102/IFD/SAN/4713/2015–2016 and BT/PR16349/MED/97/291/2016, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

Renu Bala and Vertika singh surveyed the literature and had primary responsibility of manuscript writing. Kiran Singh and Singh Rajender helped in drafting the content and manuscript editing.

Corresponding authors

Correspondence to Singh Rajender or Kiran Singh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Research Involving Human Participants and/or Animals

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, R., Singh, V., Rajender, S. et al. Environment, Lifestyle, and Female Infertility. Reprod. Sci. 28, 617–638 (2021). https://doi.org/10.1007/s43032-020-00279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00279-3

Keywords

Navigation