Skip to main content

Advertisement

Log in

Influence of Cold Rolling on the Microstructure and Mechanical Properties of FeCoCrNiMn High-Entropy Alloy

  • Original Research Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

This study delved into the influence of room temperature rolling on an FeCoCrNiMn high-entropy alloy. Initially, the alloy was synthesized via vacuum induction melting and subsequently homogenized at 1100 °C for a duration of 6 hours. Cold rolling, with thickness reduction of up to 85%, significantly altered the material’s microstructure. It led to increased dislocation density, elongation of initial grains in the rolling direction, formation of shear bands, and twinning within the grains. As deformation intensified, the alloy exhibited enhanced mechanical properties. Specifically, hardness, yield strength, and ultimate strength rose, while elongation decreased. Remarkably, with an 85% thickness reduction, the tensile strength reached 1268 MPa—approximately 2.7 times higher than that of the as-cast counterpart. Additionally, scanning electron microscopy (SEM) examinations of the fracture surface revealed a transition from ductile-to-brittle fracture mode as thickness reduction occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Tang, R. Wang, B. Xiao, Z. Zhang, S. Li, J. Qiao, S. Bai, Y. Zhang, P.K. Liaw, A review on the dynamic-mechanical behaviors of high-entropy alloys. Prog. Mater. Sci.. Mater. Sci. 135, 296–345 (2023). https://doi.org/10.1016/j.pmatsci.2023.101090

    Article  CAS  Google Scholar 

  2. D. Kumar, Recent advances in tribology of high entropy alloys: a critical review. Prog. Mater. Sci.. Mater. Sci. 136, 101–106 (2023). https://doi.org/10.1016/j.pmatsci.2023.101106

    Article  CAS  Google Scholar 

  3. S.A. Sajadi, M.R. Toroghinejad, A. Rezaeian, G.R. Ebrahimi, A study of hot compression behavior of an as-cast FeCrCuNi2Mn2 high-entropy alloy. J. Alloys Compd. 896, 162732 (2022). https://doi.org/10.1016/j.jallcom.2021.162732

    Article  CAS  Google Scholar 

  4. S.A. Sajadi, M.R. Toroghinejad, A. Rezaeian, G. Reza, Dynamic recrystallization behavior of the equiatomic FeCoCrNi high-entropy alloy during high temperature deformation. J. Mater. Res. Technol. 1, 1 (2022). https://doi.org/10.1016/j.jmrt.2022.07.055

    Article  CAS  Google Scholar 

  5. A. Razazzadeh, M. Atapour, M.H. Enayati, Corrosion characteristics of TiNbMoMnFe high entropy thin film deposited on AISI316L for biomedical applications. Metal Mater. Int. 27, 2341–2352 (2021). https://doi.org/10.1007/s12540-020-00908-1

    Article  CAS  Google Scholar 

  6. Z. Li, D. Raabe, Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties. JOM. 69, 2099–2106 (2017). https://doi.org/10.1007/s11837-017-2540-2

    Article  CAS  PubMed  Google Scholar 

  7. S.R. Mishra, A. Karati, S. Ghosh, Lowering thermal conductivity in thermoelectric Ti2−xNiCoSnSb half Heusler high entropy alloys. J. Mater. Sci. 58, 10736–10752 (2023). https://doi.org/10.1007/s10853-023-08664-4

    Article  CAS  ADS  Google Scholar 

  8. A. Shabani, M.R. Toroghinejad, A. Shafyei, P. Cavaliere, Effect of cold-rolling on microstructure, texture and mechanical properties of an equiatomic FeCrCuMnNi high entropy alloy. Materialia. 1, 175–184 (2018). https://doi.org/10.1016/j.mtla.2018.06.004

    Article  CAS  Google Scholar 

  9. S.A. Sajadi, M.R. Toroghinejad, A. Rezaeian, Z. Wu, Effect of annealing treatment on microstructural and mechanical properties of a hot-forged FeCrCuMn2Ni2 high-entropy alloy. Materialia. (2022). https://doi.org/10.1016/j.mtla.2022.101618

    Article  Google Scholar 

  10. N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov, G. Salishchev, Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics. 59, 8–17 (2015). https://doi.org/10.1016/j.intermet.2014.12.004

    Article  CAS  Google Scholar 

  11. Z. Wang, S. Ma, H.J. Yang, Z. Wang, M. Ziomek-Moroz, J.W. Qiao, Effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25 High-entropy alloy. Mater. Sci. Eng. A. 645, 163–169 (2015). https://doi.org/10.1016/j.msea.2015.07.088

    Article  CAS  Google Scholar 

  12. J. Hou, M. Zhang, S. Ma, P. Liaw, Y. Zhang, J. Qiao, Strengthening in Al 0.25 CoCrFeNi high-entropy alloys by cold rolling. Mater. Sci. Eng. A. (2017). https://doi.org/10.1016/j.msea.2017.09.089

    Article  Google Scholar 

  13. S. Zherebtsov, N. Yurchenko, D. Shaysultanov, M. Tikhonovsky, G. Salishchev, N. Stepanov, Microstructure and mechanical properties evolution in HfNbTaTiZr refractory high-entropy alloy during cold rolling. Adv. Eng. Mater. 22, 2000105 (2020). https://doi.org/10.1002/adem.202000105

    Article  CAS  Google Scholar 

  14. S.M. Oh, S.I. Hong, Microstructure and mechanical properties of equitomic CoCrFeCuNi high entropy alloy. Key Eng. Mater.Eng Mater. 765, 149–154 (2018). https://doi.org/10.4028/www.scientific.net/KEM.765.149

    Article  Google Scholar 

  15. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233–238 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  CAS  Google Scholar 

  16. S. Guo, Phase selection rules for cast high entropy alloys: an overview. Mater. Sci. Technol. 31, 1 (2015). https://doi.org/10.1179/1743284715Y.0000000018

    Article  CAS  Google Scholar 

  17. K.X. Yin, Z.W. Huang, B.L. Wu, G.Z. Zhang, Q.W. Tian, Y.N. Wang, WangPrediction of phase stabilities of solid solutions for high entropy alloys. Acta Mater. Mater. 263, 119–445 (2024). https://doi.org/10.1016/j.actamat.2023.119445

    Article  CAS  Google Scholar 

  18. S. Yang, G. Liu, Y. Zhong, Revisit the VEC criterion in high entropy alloys (HEAs) with high-throughput ab initio calculations: a case study with Al-Co-Cr-Fe-Ni system, Revisit the VEC criterion in high entropy alloys (HEAs) with high-throughput ab initio calculations: a case study with Al-Co-Cr-Fe-Ni system. J. Alloys Compd. 916, 165–477 (2022). https://doi.org/10.1016/j.jallcom.2022.165477

    Article  CAS  Google Scholar 

  19. N. Prasad, N. Bibhanshu, N. Nayan, G.S. Avadhani, S. Suwas, Hot deformation behavior of the high-entropy alloy CoCuFeMnNi. J. Mater. Res. 34, 744–755 (2019). https://doi.org/10.1557/jmr.2018.500

    Article  CAS  ADS  Google Scholar 

  20. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. Mater. 61, 5743–5755 (2013). https://doi.org/10.1016/j.actamat.2013.06.018

    Article  CAS  ADS  Google Scholar 

  21. Q. Liu, N. Hansen, Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation. Scr. Metall. Mater. 32, 1289–1295 (1995). https://doi.org/10.1016/0956-716X(94)00019-E

    Article  CAS  Google Scholar 

  22. M. Klimova, N. Stepanov, D. Shaysultanov, R. Chernichenko, N. Yurchenko, V. Sanin, S. Zherebtsov, Microstructure and mechanical properties evolution of the Al, C-containing CoCrFeNiMn-type high-entropy alloy during cold rolling. Mater. (2018). https://doi.org/10.3390/ma11010053

    Article  Google Scholar 

  23. M. Milad, N. Zreiba, F. Elhalouani, C. Baradai, The effect of cold work on structure and properties of AISI 304 stainless steel. J. Mater. Process. Technol. 203, 80–85 (2008). https://doi.org/10.1016/j.jmatprotec.2007.09.080

    Article  CAS  Google Scholar 

  24. A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys. Intermetallics. 39, 74–78 (2013). https://doi.org/10.1016/j.intermet.2013.03.018

    Article  CAS  Google Scholar 

  25. S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, Z.P. Lu, Stacking fault energy of face-centered-cubic high entropy alloys. Intermetallics. 93, 269–273 (2018). https://doi.org/10.1016/j.intermet.2017.10.004

    Article  CAS  Google Scholar 

  26. N. Naga Krishna, R. Tejas, K. Sivaprasad, K. Venkateswarlu, Study on cryorolled Al–Cu alloy using X-ray diffraction line profile analysis and evaluation of strengthening mechanisms. Mater. Des. 52, 785–790 (2013). https://doi.org/10.1016/j.matdes.2013.05.095

    Article  CAS  Google Scholar 

  27. K.S.V.B.R. Krishna, V. SoundararajaPerumal, C. Kondaveeti, S. Akella, S. Katakam, R. Narayanasamy, V. Karodi, Mechanical behavior and void coalescence analysis of cryorolled AA8090 alloy. Int. J. Adv. Manuf. Technol. 1, 1 (2017). https://doi.org/10.1007/s00170-016-8863-2

    Article  Google Scholar 

  28. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. Metall. 1, 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  29. P. Wu, K. Gan, D. Yan, Z. Fu, Z. Li, A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy. Corros. Sci.. Sci. 183, 109341 (2021). https://doi.org/10.1016/j.corsci.2021.109341

    Article  CAS  Google Scholar 

  30. G.D. Sathiaraj, P.P. Bhattacharjee, C.-W. Tsai, J.-W. Yeh, Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy. Intermetallics. 69, 1–9 (2016). https://doi.org/10.1016/j.intermet.2015.10.005

    Article  CAS  Google Scholar 

  31. J.H. Hollomon, Tensile deformation. Ransactions Metall. Soc. AIME. 162, 268–290 (1945)

    Google Scholar 

  32. N. Saeidi, M. Karimi, M.R. Toroghinejad, Development of a new dual phase steel with laminated microstructural morphology. Mater. Chem. Phys. 192, 1–7 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.052

    Article  CAS  Google Scholar 

  33. J. Luo, Z. Mei, W. Tian, Z. Wang, Diminishing of work hardening in electroformed polycrystalline copper with nano-sized and uf-sized twins. Mater. Sci. Eng. A. 441, 282–290 (2006). https://doi.org/10.1016/j.msea.2006.08.051

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was obtained from Isfahan University of Technology (IUT).

Author information

Authors and Affiliations

Authors

Contributions

Mohamad Ahl Sarmadi performed investigation, validation, data curation, formal analysis, and original—draft writing. Masoud Atapour did conceptualization, methodology, data validation, supervision, writing—review, and editing. Mehdi Alizadeh conducted supervision and resources.

Corresponding author

Correspondence to Masoud Atapour.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmadi, M.A., Atapour, M. & Alizadeh, M. Influence of Cold Rolling on the Microstructure and Mechanical Properties of FeCoCrNiMn High-Entropy Alloy. Metallogr. Microstruct. Anal. (2024). https://doi.org/10.1007/s13632-024-01058-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13632-024-01058-1

Keywords

Navigation